
 
    

 
http://www.didel.com/     info@didel.com  

www.didel.com/xbot/Dist2IrEn.pdf  

 

Infrared distance sensor Xdist2IR 
Translated from https://www.didel.com/xbot/Dist2Ir.pdf  

 

Infrared reflection sensors have the advantage of being small, inexpensive and easy to 
implement. But they are sensitive to ambient light (especially spotlights) and are difficult to 
calibrate. They are also suitable only for short distances, which depend on the size of the 
sensor, its optics, the power emitted, possible filters. General explanations are given in French 
under  www.didel.com/doc/sens/DocIr.pdf 
 
The Dist2R sensor was developed for the 
XBotMicro, to measure the distances to the right 
and to the left. It is easily used on another robot 
platform by pulling 4 or 5 wires to replace the 
connector below the circuit. Power supply is 3 to 
5V 70 mA when the IR diodes are illuminated 
A digital output controls the IR lighting (optional), 
and 2 digital inputs read the distance with a 
simple procedure. 
The module has been designed to add an SR05 
type ultrasound sensor. Two wires must be added 
toward two free pins, see SR05 documentation. 

 
  
Principle 
The principle of a reflection sensor is to illuminate the 
obstacle with an infrared LED, and to measure the 
reflected light with a photodiode or a phototransistor. The 
illuminated object retransmits an energy inversely 
proportional to the square of the distance. 
One need a resistor to fix the current through the LED that 
illuminates the scene. The resistance of the phototransistor 
is usually measured with a voltage divider. For the 
measurement accuracy to be maximum, the measured 
voltage must be close to 2.5V. This involves a tuning 
potentiometer and a limited measuring range.  

 

Measurement by discharge of a capacitor 
An elegant solution for measuring a variable resistor is to 
charge a capacitor in parallel with the resistor and 
measure the discharge time. The microcontroller charges 
the capacitor in a few microseconds. It must then switch 
the input port, and measure the discharge time till the 
logic level is zero. Less light mean higher resistance  and 
longer discharge, but parasitic resistance and ambient 
light limit the measurable distance. The value of the 
capacitor is such that the processor counts the time with 
sufficient precision for a short time so that the robot does 
not move too much between two measurements. In the 
dark, the capacitor does not discharge, and a counter 
limits the measurement to for example a value of 100. If 
one counts every 100 microseconds, the duration of the 
measurement is 10 ms. 

 
 

 



 
To reduce the effect of ambient light, we can make a first measurement without IR lighting, then 
a second measurement with lighting, the difference corrects a little, but what is important is to 
check that the ambient light gives a value very different from the value illuminated by IR. If not, 
the sensor is misdirected or must be protected by well positionned caches. 
 
Schematic 

The two IR diodes are in parallel, to be 3V 
compatible, the diode voltage drop is about 
1.3V. A transistor controls the current, 
which must be important. The diagram 
gives the wiring on the connector. These 
signals are found on the front connector of 
the XBotMicro. The usual wiring uses 
Arduino pins 14 / A0,15 / A1,16 / A2  in 
digital mode. 

 
 

Different wiring requires changing the pin's numbers at the beginning of the definition file. 
 
Definitions 
In addition to the definitions of the pins and their actions, for the Left and Right IR signals, two 
directions macros called DirCha (output for loading the capacitors) and DirMes (inputs for 
measuring the transition to the 0 state) are defined. They control the load / discharge mode for  
the capacitors. The set-up initialize the two G D bits on the PORTC. 
The XBot documentation encourages C-compatible programming on other microcontrollers. The 
use of Arduino function works,but is slower.  
 
// XBotDistIrDef.h  

#include <Arduino.h> 

#define bDistG  0 //PORTC  Arduino pin 14/A0 

#define bDistD  1 //PORTC  pin15 

#define bLedIr  2 //PORTC  pin16 
#define LedIrOn   bitSet   (PORTC,bLedIr) 

#define LedIrOff  bitClear (PORTC,bLedIr)   

#define CapaCha  PORTC |= 1<<bDistG | 1<< bDistD \ 

                PORTC &= ~(1<<bDistG | 1<< bDistD)          

#define DirMes   DDRC  &=~(1<<bDistG| 1<< bDistD) 

#define CapaGHigh PINC & 1<<bDistG 

#define CapaDHigh PINC & 1<<bDistD 

 

void SetupDistIr () {    

   DirLedIr;           

   DirMes;  

   PORTC |= 1<<bDistG | 1<< bDistD 

} 

// XBotDistIrDef.h 

#define DistG  14 

#define bDistD 15 

#define bLedIr 16 

#define LedIrOn digitalWrite(LedIr,1) 

#define LedIrOff digitalWrite(LedIr,0) 

#define DirCha pinMode(DistG,1); pinMode(DistG,1);                                                                           

#define DirMes pinMode(DistG,0); pinMode(DistG,0); 

#define CapaGHigh digitalRead (DistG) 

#define CapaDHigh digitalRead (DistD) 

 

void SetupDistIr () {    

   pinMode (LedIr,1);  

   DirMes; 

   digitalWrite(DistG,1);  

   digitalWrite(DistG,1); 

} 

Program's source can be found under https://www.didel.com/xbot/Dist2Ir.zip  
 

Software 
For the measurement, one precharges during 100 us, then one switches in input mode, and one 
reads the value which decreases exponentially. As long as the threshold is greater than state 1 
(about 1.9V to 5V) one counts. The counters are updated every 100 microseconds, depending 
on the capacitor value.  

 

byte cnt=0, cntG=0, cntD=0 ; 

for (byte i=0; i<MaxVal; i++) { 

  if (CapaGHigh) cntG++ ; 

  if (CapaDHigh) cntD++ ; 

  delayMicroseconds (100);  // adjust together with MaxVal 

} 

Using Arduino micros() is not efficient for 2 channels. 
If max distance is 100, the max acquisition time is10ms and the distance is about 60mm with a 
100 µF capacitor. During this time, the robot will move 1 cm if it is fast (1m / s). Good. 



 
One can increase the max count to 200. It will double the time and increase the distance if 
ambiant light is low. It is easy to modify the loop and get out when the two capa are discharged. 
 
Test program 
The program measures continously and displays the values on the terminal every second. 
This dissipates too much, 10 measures per second would be enough. 
Instead of #include, one can of course insert the instructions of the definition file instead.  
Program's source can be found under https://www.didel.com/xbot/Dist2Ir.zip 
//TestDist1.ino 

#include "XBotDistIrDef.h" 

 

void setup() {  

  SetupDistIr (); 

  Serial.begin(9600);  

} 

// variables globales 

byte mesureG, mesureD; 

#define MaxVal 100  // max 250 

void GetDist () { 

   volatile byte cntG=0, cntD=0 ; 

   DirCha ;  // precharge 

   delayMicroseconds (100) ; 

   LedIrOn ; DirMes ;  

   cntG = 0 ;  cntD = 0 ; 

   for (byte i=0; i<MaxVal; i++) { 

      delayMicroseconds (100) ; 

      if (CapaGHigh)  cntG++ ; 

      if (CapaDHigh)  cntD++ ; 

   } 

   LedIrOff ; 

   mesureG = cntG ; 

   mesureD = cntD ; 

} 

  

volatile byte cntAffi; 

void loop() { 

  GetDist () ;  

 // tous les 100x 10ms, on affiche 

  cntAffi ++ ; 

  if (cntAffi > 100) {  // on affiche 

    cntAffi = 0 ; 

    Serial.print("Distance ");  

    Serial.print(mesureG);  

    Serial.print(" ");  

    Serial.println(mesureD); 

  }   

} 

 

 

Test distance max mesurées (valeur 100) 
 
papier blanc  70 mm  
papier noir   72 mm 
boîte plastique jaune 48mm 
 
La distance minimale est de ~10mm � valeur 2 

 

In this diagram, the program has been 
completed by transferring the 8-bit cntG value 
to a port having a digital-to-analog converter 
(Microdule DA8). The output of the converter 
shows the counting stairs, which stop when 
the capacitor voltage drops below 0.8V. 
This also shows that the capacitor should 
discharge, not charge. 

 
The ambiant light can be measured by removing the LedIrOn instruction. The TestDist1b.ino 
program measure illuminated and unlit; interesting to compare changing the orientation. 
 
Avoid obstacles 

A simple solution based on obstacle avoidance with 
whiskers decides that there is an obstacle if the 
distance is less than a predefined value. The motors 
can be controlled in all or nothing, but a speed slowed 
by PWM may be preferable, to better adjust the 
parameters. 
In the program, we added the XBot definitions and 
figured out how to roll back the robot with the Arduino 
PWM on 2 channels:  
See www.didel.com/robots/MotorControl.pdf 

 



 

 

Interrupts 
To be called every 100 microseconds per interrupt, the GetDist () function must be transformed 
into a state machine. 
volatile byte etat=0; 

volatile byte cnt, cntG=0, cntD=0 ; 

void GetDist () { 

switch (etat) { 

  case 0: 

   CapaCha ;  DirCha ;  // precharge 

   cntG=0; cntD=0; cnt=0; 

   etat=1; break; 

  case 1: 

   LedIrOn ; DirMes ;  

   cnt++;  

   if (CapaGHigh)  cntG++ ; 

   if (CapaDHigh)  cntD++ ; 

   if (cnt>100) { LedIrOff ; etat=2; } 

   break; 

  case 2: 

   mesureG = cntG ; 

   mesureD = cntD ; 

   etat=0; break;   

  }  // end switch 

} 

 

The test that calls this every 100 microseconds is given in TestDist3.ino 
 
Let's use the Timer2 to create an interrupt every 100 microseconds, as explained under 
The call of GetDist () per interrupt takes ~ 5us, so slows down the main program by 5% (but not 
the delay () routine, handled by interrupt). During the interrupt, the PFM and other tasks will be 
managed as needed. The test program displays the values read on the terminal every second 
using a delay (1000). 
 
The interrupt routine can now call this tested 
module without additional debugging. 
ISR (TIMER2_OVF_vect) 

{ 

  TCNT2 = 65;  //  100 us 

    GetDist ();  

} 

 

void SetupTimer2() { 

  cli(); 

  TCCR2A = 0; //default 

  TCCR2B = 0b00000010;  

  TIMSK2 = 0b00000001; 

  sei(); 

} 

 
 

The program is now clear with well-separated 
functions. 
//TestDist4.ino  Distance par interruption 

#include "XBotDef.h" 

#include "XBotDistIrDef.h" 

#include "XBotDistIr.h" 

#include "ISRTimerDistIr.h" 

void setup() {  

  SetupXBot (); 

  SetupDistIr (); 

  SetupTimer2 (); 

  Serial.begin(9600);  

} 

void loop() { 

    delay (1000);// tous 1s, on affiche 

    Serial.print("Eclaire ");  

    Serial.print(mesureG);  

    Serial.print(" ");  

    Serial.println(mesureD);  

} 
 
Wall tracking 
We have all the tools to program movements of the robot. Take the example of following a wall. 
It is necessary to enslave the pfm on the distance of the right wall. The measured value is 
between 20 and 100 (10 to 70mm). If it is greater than 50 (far), slow down the right engine. less 
than 40, it must be accelerated.  
 
The program is simple using the X library by 
limiting the value of the sensor to the max 
value of the pfm. 
TestDist1.ino add  

void loop() {    

  pfmD = distIrG; // braitenberg   

  pfmG = distIrD; 

} 

Obviously, there is half a page of declaration and 5 inserted files. 
Video underhttps://www.youtube.com/watch?v=AULplRbHatU 
Using libX   www.didel.com/xbot/LibXDist2Ir.pdf  
Program under  www.didel.com/xbot/LibXDist2Ir.zip  

 
jdn 180902 


