RIC324

30 novembre 1903 picsoft

LABORATOIRE DE MICRO-INFORMATIQUE EPFL

Programming the Microchip—PIC microcontrolers

J.D. Nicoud, LAMI-EPFL (now “DFDEL_ nicoud@didel.com Tel +41 21 728-6156)
July 1999, 2nd revision Sept 2003 File www.didel.com/doc/PicSoft.pdf

Table of contents

Introduction

Program memory
Registers

Flags

Instructions

Move instructions

Logical instructions
Arithmetic instructions
Increment, Decrement, Complement and Clear
Rotate and Swap

Bit instructions

Skip and jump instructions
Call and return instructions

6. Specific approach to PIC programming 6
Logical AND between bits
Writing to a port
Positive and negative numbers
Comparing variables
Absolute value and saturation
Multiprecision and BCD operations
Indirect access
Tables
Computed "goto"

7. Pages and Banks 11
8-bit pages
Program pages
Variable banks

8. Simple program examples 11
Wait loop and counters
BCD counter

9. Serial transfers 13
Serial out
Serial in
RS232 serial transfers
Bidirectional [/O and open-collector

Ok wd =
wWwN N

10. DC motor control 15
PWM
PFM
Rotary encoder

11. Stepping and synchronous motor control 17

2-phase motor
2-phase Lavet bidirectional motors
3-phase smoovy motors

12. Interfacing the analog world 19
13. Multitask handling 19
Synchronous programming
Timer
14. Real time debugging 21

1. Introduction

The Microchip PIC family of microcontrollers is advertised as easy to learn due to its mere 33
instructions (RISC-like). However, one needs to spend some time to fully understand its architecture,
specific features, and the rather unusual mechanism of several instructions. Programming in PIC
assembly is quite different from the other well known microcontrollers, such as the 8051, the HC11,
or the B88XXX. The benefits of using the PIC family have proven to be worthwhile. They are easy to
purchase even in small quantities, inexpensive, they come in small devices (as small as 8-pin and as
light as 59 mg), have minute power requirements, high execution speeds, code protection, offer lower
cost third party development tools, etc.

JON-DIDEL 17:46:59 36/11/63 8387 @TYPO:#MMG:JON:@TYPO:#MMO:JON:PICSOFT.TF 1

RIC324

Programming the PIC -2 - LAMI-EPFL and “DDIDEL. Oct 2003

The Microchip PIC family is quite large, and constantly getting larger. The low end offers some
very interesting 8-pin microcontrollers (uC), known as the 12CXXX family. The 12F675 is the first
8-pin reprogrammable circuit, with a lot of advantages. The original low end 18 - 28 pin 16CXX
family proved to be the inspiration of electronic project and gadgets builders over the last five years or
so, and the in-circuit reprogrammable (EEPROM based) 16C84/16F84 is an old dream come true. We
will focus only on the 14-bit instruction compatible family. We will not consider here the 12-bit
instruction processors (16C5x and 12C5xx family) and the 16-bit instructions processors (18Fxx family).
The objective of this paper is to explain the PIC hardware and software to a reader already familiar
(but not expert) with the PIC, and show him all the software specialties of the PIC, and how to
efficiently program some real-time applications, where the PIC excels. More and more PIC devices
incorporate specific hardware functions, such as A/D converters, pulse-width modulators, LCD drivers,
etc. that will help with the design of smaller, simpler, and more cost effective future products.

We will use the CALM (Common Assembly Language for Microprocessors) notations for easier and
more readable code. Microchip notations for instructions will also be used in program examples for
those familiar with the PIC assembly language. CALM has been designed to provide beginners with a
consistent and uniform set of notations, regardless of the target processor. Switching from one
processor to another between designs is therefore an easy task. CALM notations have been defined for
about 20 processors. A single page reference card for each processor is all that is needed for the
commonly used instructions, when the processor architecture has been understood. CALM assemblers,
the Smile-NG editor/assembler /downloader (Windows only) and the Picolo
editor/assembler/downloader /translator (Linux/Macintosh/Windows) are freeware, downloadable from the
DIDEL site; these excellent software were written at the EPFL (Swiss Federal Inst. of Technology,
Lausanne).

At first you might object to the fact that CALM has a more complex notation than Microchip and
requires more typing for the same instructions. This is true. However, the advantage of self-documented
instructions (common to any processor you use), and the rather short time spent typing, compared to
the usually lengthy debugging time, makes CALM attractive. CALM users always become CALM lovers.

2. Program memory

One of the peculiarities of the PIC family is the program memory address field. Although the
program address field is 13 bits wide (8k max), the jump and call instructions provide only 11 bits of
addresses (2k memory) and on lage processors, there are up to 4 program memory pages, and it is
not convenient to jump from one page to another. An additional 8-bit page restriction allows efficient
computed jumps and table accesses. On the 12-bit processors, there are several more restrictions (see
www.didel.com/picg/doc/PicCompati.pdef) and if a large production is not expected, one should consider
only the 12F and 16F families. The 18F family is recommended for large applications mostly
programmed in C.

3. Registers

PIC architecture is based on a work register W and a set of general purpose PIC registers (25 to
368). W register should not be considered as an accumulator, similar to the HC11 A,B registers for
instance. Other specific registers, such as the Program counter, or the Status register, are just register
locations. Most of the operations are performed with registers. Since there is only one operand possible
in an instruction, ininitializing a register with a constant (literal, immediate value) have to go through
the W register first. The general purpose registers are split into several banks in the larger PIC devices.
Special attention should be given to addressing those register banks. In choosing one PIC processor over
the other, the program memory size as well as the amount of the general purpose registers is always
considered together with the number of |/Os, the package size and the price.

4. Flags

Three particular Status register flags (Carry, Zero, and Digit carry) can be read, written, and
tested in conditional ‘skip’ instructions (section 5.7). Special attention should be given to these flags
after instructions because some of them set/clear differently as compared to other non-PIC processors.
This might allow for some neat programming tricks but also for some hard-to-find bugs.

The Zero flag behaves normally, but the Carry flag has peculiarities (see section 5.3). The Digit
carry D relates to the "half-carry" bit found in other processors but there is no decimal adjust
instruction to facilitate BCD (see sections 6.3 and 7.2).

There are no explicit instructions for conditional jumping such as "jump if negative, jump if less
than", etc. Additions and subtractions are often necessary prior to using a "skip" instruction for the
conditional jump (see section 5.6)

The bits in the status register can be set, cleared, and tested like all other I/O port and register
bits. CALM PIC assembler supports conditional skip instructions, similar to the conditional jump
instructions found in other processors, proposed by Microchip as macros (see section 5.6).

JON-DIDEL 17:46:53 36/11/63 8387 @TYPO:#MMO:JON:@TYPO:#MMO:JON:PICSOFT.TF 2

RIC324

Programming the PIC -3 - LAMI-EPFL and “DDIDEL. Oct 2003

5. Instructions

Most of the PIC instructions operate on one or two operands. All the register involving instructions
reserve a bit for the destination of the result. With the Microchip assembler, the default destination (if
the bit is not specified) is the general purpose register, not the W register. Microchip writes f,0 and
f,1 notations to specify if the destination is W, or the f register. Other assemblers use f,W, f/ 1, or f
alone for the same purpose. This is very confusing, and CALM avoid a lot of confusions with its
explicit operands.

Attention should be given to the CALM "move" instruction. It is similar to the Motorola instruction
but different from the Intel’s "mov". With CALM, the second operand is the implicit destination
operand. For example, Sub B,A (subtract A from B), means A - B --> A. Also Comp B,A (not a PIC
instruction) means A is compared to B (a subtraction is performed internally). It will be seen later that
the PIC does not follow the Pdp11/Motorola habits (sections 5.3 and 6.2).

5.1. Move instructions

It is important to notice that the status flag Z is not modified by all the move instructions. The
notation [Z] means that the Z bit is updated by the instructions: Z=1 if the result of the data
transferred is zero, Z=0 otherwise.

MOVLW VAL Move #Val, W [none]
MOVWF REG Move W,Reg [none]
MOVF REG,0 Move Reg,W [Z]
MOVF REG,1 Test Reg [Z]

The last instruction can be written in CALM "Move Reg,Reg". It is indeed a one-operand that
does not modify the content of the register Reg, and may be useful to test if the content is zero or
not. One should be careful that "Move W,Reg" does not modify Z, but "Move Reg,W" does it.

There are other special "move" instructions which involve OPTION and direction ("TRIS") registers.

TRIS PORTA Move W, TrisA [none]
TRIS PORTB Move W, TrisB [none]
TRIS PORTC Move W, TrisC [none]
OPTION Move W,Option [nonel
CLRWDT ClrwDT [none]
SLEEP Sleep [none]

On the 40-pin processors, the direction of PortD and PortE cannot be set by a TRIS instruction. The
direction registers TrisD and TrisE are only accessible in Bankl.

5.2. Logical instructions

All these instructions modify the status flag Z: Z = 1 if the result of the operation is zero.

ANDLW VAL And #Val, W [Z]
ANDWF REG,0 And Reg,W [Z]
ANDWF REG,1 And W,Reg [Z]
IORLW VAL Or #Val, W [Z]
IORWF REG,0 Or Reg,W [Z]
IORWF REG,1 Or W,Reg [Z]
XORLW VAL Xor #Val, W [Z]
XORWF REG,0 Xor Reg,W [Z]
XORWF REG, 1 Xor W,Reg [Z]

5.3. Arithmetic instructions

The add instruction is straightforward; the three status flags are modified: [C,D,Z].

ADDLW VAL Add #Val, W [C,D,Z] Val + (W) --> W
ADDWF REG,0 Add Reg,W [C,D,Z] (Reg) + (W) --> W
ADDWF REG, 1 Add W,Reg [C,D,Z] (W) + (Reg) --> Reg

For subtraction, one needs to understand how the operation is performed internally. Contrarily to
other processors, the second operand is subtracted (by adding its 2’s complement) from the first
operand (immediate value or register content). This is better expressed by 3-operand instructions:
diminuand, diminutor, and result.

SUBLW VAL Sub w,#VallW [C,D,Z] Val - (W) --> W
SUBWF REG,0 Sub W,Reg,W [C,D,Z] (Reg) - (W) --> W
SUBWF REG, 1 Sub W,Reg [C,.D,Z] (Reg) - (W) --> Reg

(equiv. to Sub W,Reg,Reg)

The Sub instruction must be used to compare the contents of W or a variable, as shown in
section 6.2. If the Carry is set, this indicates that the result is positive or that W is lower than the
given immediate value or register content. If the Carry is clear, W is higher. The Z flag is set in the
case of equality. For equality comparizons, a XOR is quite adequate.

JON-DIDEL 17:46:53 36/11/63 8387 @TYPO:#MMO:JON:@TYPO:#MMG:JON:PICSOFT.TF 3

RIC324

Programming the PIC -4 - LAMI-EPFL and “DDIDEL. Oct 2003

5.4. Increment, Decrement, Complement and Clear

Increment and decrement are not possible on the W register. One can, however, use Add #1,W
and Add #-1,W, which modify the Carry, Z, and D flags, while Inc and Dec on a register modify only
Z. Sub W,#1,W performs an unusual operation (it adds to value 1 the complement of W content), but
Sub W,Reg with a #1 in W can be used to decrement a register (with only the advantage of
modifying Carry).

INCF REG, 1 Inc Reg [Z1 (Reg)+1 --> Reg

INCF REG,0 Inc Reg,W [z] (Regl+1 --> W (Reg) not
modified

DECF REG, 1 Dec Reg [Z (Reg)-1 --> Reg

DECF REG,0 Dec Reg,W [z] (Reg)-1 --> W (Reg) not
modified

COMF REG, 1 Not Reg [Z] /(Reg) --> Reg

COMF REG,0 Not Reg,W [Z1 /(Reg) --> W (Reg) not modified

CLRF REG Cir Reg [z=1]

CLRW Clr W [z=1]

The complement instruction is a logical Not (inversion of all bits) and not a negate (2's
complement) instruction. There are two solutions for implementing the negate (2-s complement)
instruction found in other processors:

SUBLW 0 Sub W,#0W [C,D,Z] -(W) --> W
COMF REG,1 Not Reg
INCF REG, 1 Inc Reg [Z1 -(Reg) --> Reg

Not W is implemented with the Xor #-1,W instruction.

5.5. Rotate and Swap

Only two shift instructions are provided, and they do a rotate through carry. This is convenient to
examine one bit at a time, but in many cases the carry value must be prepared before the shift.
Swapping the two nibbles of an 8-bit variable is possible.

RRF REG,1 RRC Reg [C]

RRF REG,0 RRC Reg,W [C] (Reg) not modified
RLF REG,1 RLC Reg [C]

RLF REG,0 RLC Reg,W [C] (Reg) not modified
SWAPF REG, 1 Swap Reg

SWAPF REG,0 Swap Reg,W (Reg) not modified

It is usually necessary to prepare the carry bit before any rotate. For instance, an 16-bit divide
by 2 is written

BCF STATUS,0 CIrC
RRF High,1 RRC High
RRF Low,1 RRC Low [C]

5.6. Bit instructions

The PIC is quite powerful to set, clear, and test bits on ports, variables, the processor status
register, and even the program counter. The bit number (7..0) specifies the modified bit.

BCF REG,bNumber Clr Reg:#bNumber [none]
BSF REG,bNumber Set Reg:#bNumber [none]
BTFSC REG,bNumber TestSkip,BC Reg:#bNumber [nonel
BTFFS REG,bNumber TestSkip,BS Reg:#bNumber [nonel

The number sign is consistent with CALM syntax, since it is an immediate value.

Inverting a single bit is possible with the XOR instruction, in order to replace the missing Not
Reg:#ZbNumber instruction.

MOVLW 2**bNumber Move #2xxbNumber, W

XORLW REG Xor W,Reg

Logical instructions can be used to to modify a single bit of W (they can also modify several bits
at the same time):

ANDLW -1-(2**BNUMBER) And # NOT.(2xxbNumber),W ClIr

IORWF 2 %*BNUMBER Or #2xxbNumber, W Set

XORLW 2**BNUMBER Xor #2xxbNumber, W Not

CALM assemblers accept the instructions found in other processors for handling the status flags:
BSF STATUS,0 SetC [C=1] Set carry

BCF STATUS,0 CiIrC [C=0] Clr carry

BSF STATUS,1 SetD [D=1] Set D, decimal carry flag (half carry)

BCF STATUS,1 CIrD [D=0] Clr D

BSF STATUS,2 Set?Z [Z=1] Set Zero flag
JON-DIDEL 17:46:59 30/11/03 8987 @TYPO:#MM@:JDN:@TYPO: #MMe:JDN:PICSOFT.TF 4

RIC324

Programming the PIC -5 - LAMI-EPFL and "DIDEL. Oct 2003
BCF STATUS,2 ClIrz [z=0] Clr Zero flag
BTFSC STATUS,0 Skip,CC Skip if Carry Clear (result of the
previous ADD,SUB,RLC,RRC)
BTFSS STATUS,0 Skip,CS Skip if Carry Set
BTFSC STATUS,1 Skip,DC Skip if Digit carry Clear
BTFSS STATUS,1 Skip,DS Skip if Digit carry Set
BTFSS STATUS,2 Skip,EQ Skip if Equal (result of the previous ADD, SUB, INC,
operation that modified Z)
Skip,ZS Skip if Zero bit set (same as above)
BTFSC STATUS,2 Skip,NE Skip if Non Equal
Skip,ZC Skip if Zero bit clear (same as above)
Single instruction macros can be used when [/O bits are manipulated, in order to increase the
portability of programs. For instance, if an output bit is a serial clock CK, it will be referred in the

program by the macros ChOn and CkOf; a chnge
macro:

of hardware will imply only the modification of the

CKON MACRO .Macro CkOn

BSF PORTA,bCK Set PortA: #bCk
ENDM .EndMacro

CKOFF MACRO .Macro CkOff

BCF PORTA,bCK Cir PortA: #bCk
ENDM .EndMacro

See examples in section 7 for other macros.

5.7. Skip and jump instructions

Conditional jumps wusually available with other processors do not exist. Conditional skips are
frequently more efficient.
INCFSZ REG,0 IncSkip,EQ Reg [none]
Increment Reg and Skip if result is Equal to zero
INCFSZ REG, 1 IncSkip,EQ Reg,W [none] (Reg) not modified
Copy Reg in W, then increment and Skip if result is Equal to zero
DECFSZ REG,0 DecSkip,EQ Reg [none]
DECFSZ REG,1 DecSkip,EQ Reg,W [none] (Reg) not modified
GOTO ADDR Jump AddressLabel

One can notice that IncSkip,NE etc. are missing. They can be replaced by two instructions:

INC REG
BTFSC STATUS,2

Inc
Skip,NE

Reg

A typical application example is when a counter has to be reloaded at its initial value when it

reaches zero. Two instructions are required, it is
faster to prepare the value before decrementing,
required.

not possible to skip over both of them. It is hence
and skip over the reinitialization of the counter if

3 or 4 microsecond duration

DECFSZ CNT DecSkip,EQ Cnt
GOTO NEXT Jump Next
MOVLW INICNT Move #IniCnt,
MOVWF CNT Move Ww,Cnt
NEXT Next:

Always 4 microsecond
MOVLW INICNT Move #IniCnt,
DECF CNT Dec Cnt
BTFSC STATUS,2 Skip,NE
MOVWF CNT Move Ww,Cnt

w

duration
W ; in case we need it

Programming 16-bit counters is trivial. One can skip the instruction which increment the high bit
counter as long the low bit counter does not overflow (that is reaches again zero). An equivalent

option is to always increment the high bit counter

, but decrement before to compensate when the low

bit counter is different from zero. It may looks stupid, but is more efficient for 24-, 32-bit counters.

; least significant byte, bits 7..0

; bit 15..8

INCF CNTLOW Inc CntLow

BTFSC STATUS,2 Skip,NE

INCF CNTHIGH Inc CntHigh
or or

INCFSZ CNTLOW IncSkip,EQ CntLow

DECF CNTHIGH Dec CntHigh

INCF CNTHIGH Inc CntHigh

Decrementing a 16-bit counter need more attention

JON-DIDEL 17:46:53 36/11/63 8387 @TYPO:#MMO:JON:@TYPO:#MMO:JON:PICSOFT.TF 5

RIC324

Programming the PIC - 6 - LAMI-EPFL and “DDIDEL. Oct 2003

MOVF CNTLOW, 1 Test CntLow
BTFSC STATUS,2 Skip,NE

DECF CNTHIGH Dec CntHigh
DECF CNTLOW Dec CntLow

5.8. Call and return instructions

There are 8 hardware stack locations for the Program counter and the stack pointer is not
accessible. After 8 imbricated calls, the wront return address is taken. The Call and Return instructions
of course do not modify the status flags.

CALL LABEL Call Label (call routine)

RET Ret (return from subroutine)
RETFIE Retl (return from interrupt)
RETLW K RetMove #Val W (load W and return)

\the Retl (return from interrupt) set the GIE (General Interrupt enable) bit in addition to reloading the
return address from the stack.

The last instruction, RetMove #Val,W returns the given value in W and is quite interesting; its
use will be explained in section 6.5.

6. Specific approach to PIC programming
6.1. Logical AND between bits

It is rather simple with the PIC to do logic operations between any two bits of registers or ports.
For the logical AND, one writes

BTFSC REG1,BIT1 TestSkip,BC Reg1:#Bit1
BTFSS REG2,BIT2 TestSkip,BS Reg2:#Bit2
GOTO DONAND Jump DoNand ; if Bit1 or Bit2 is O

; Continue here if Bit1 .AND. Bit2 is 1

The following set of instructions may be useful, and can be inserted in a library of Macros. The
sign $, respectively APC in CALM, is the assembler PC; using this notation avoids the need to declare
labels, but is not encouraged.

; SkipAND A,B Skip next instruction if A.AND.B = 1
BTFSS REG1,BIT1 TestSkip,BS Reg1:#Bit1
BTFSC REG2,BIT2 TestSkip,BC Reg2:#Bit2
(Jump Nand)

; SkipOR A,B Skip next instruction if A.OR.B = 1

BTFSC REG1,BIT1 TestSkip,BC Reg1:#Bit1
GOTO $+2 Jump APC+2
BTFSS REG2,BIT2 TestSkip,BS Reg2:#Bit2

(Jump Nor)

; SkipXOR A,B Skip next instruction if A.XOR.B = 1

BTFSC REG1,BIT1 TestSkip,BC Reg1:#Bit1
BTFSC REG2,BIT2 TestSkip,BC Reg2:#Bit2
GOTO $+2 Jump APC+2
GOTO $+4 Jump APC+4
BTFSS REG1,BIT1 TestSkip,BS Regl:#Bit1
BTFSS REG2,BIT2 TestSkip,BS Reg2:#Bit2

(Jump XNor)

6.2. Writing to a port

A 1/0O port is frequently assigned to several tasks inside the program. One given task that would
just write on the port could change bits under the control of another task. Set and CIr bits solve this
problem, but is iis not efficient if several bits have to be modified. The best is to read the port,
modify only the concerned bits, and write the result on the port.

Mask = 2°01110000 ; Bits that may be changed

; New ; Value to be copied on the port, on bits 6,5,4
; Bits 7, 3,2,1,0 are all clear

Move Port,W

And Mask.XOR.16°FF ; Clear the bits 6,5,4

Or New,Port ; Update bits 6,5,4

Move W,Port

An interrupt must not modify the port during these instructions.

6.3. Positive and negative numbers

Microcontroller are mostly handling 8 bit positive numbers, value 0 to 255. Overflow in an addition
will set the carry. Underflow in a subtraction is not allowed (and will clear the carry in the special
case of the PIC).

JON-DIDEL 17:46:53 36/11/63 8387 @TYPO:#MMO:JON:@TYPO:#MMO:JON:PICSOFT.TF 6

RIC324

Programming the PIC -7 - LAMI-EPFL and “DDIDEL. Oct 2003

Negative numbers can be represented from several ways. The sign can be placed in another status
word. Usually, the 2-s complement form is used, bit 7 is the sign bit, and numbers range between
-128 and +127. When comparing numbers, it is important to know their reprezentation.

255
16°FF 0 1 -1et

Positive 2s complement \ [T]gpo0000 [11111111 [0]eeeooas (e 1111

or Arithmetic |
numbers -128

or Logical
numbers

[l
))
01111111 mnmn

= -16"80" 16°7F

A < B picsoft2

6.4. Comparing variables

The compare instruction does not exist on the PIC. For equality, one can use the XOR instruction.
When the two operands are equal, the result is zero, and the Zero bit is thus set.

For the usual LO (lower), LS (lower same), HI (higher), HS (Higher same) compare between
positive integers, one must subtract, and see the result, taking care of the inverted Carry value (section
5.3). If W’s contents are lower than or equal to the compared value, Carry is set. Signed numbers are
not considered here, see www.didel.com/picg/doc/Arith.pdef).

Hence, one can define the following instruction groups. They modify W, which is usually not
expected from a Compare instruction. As usual with the "source-destination notations" (Motorola), Comp
A,B means B is compared to A. Result is HI (higher) if B > A.

; Skip_HI (CC) Comp #Val,W and skip if (W) higher than Val (modify W)
SUBLW VAL Sub W,#Val,W
BTFSC STATUS,0O Skip,CC
(jump if lower or same)

; Skip_HS (CC or EQ) Comp #Val,W and skip if higher or same

SUBLW VAL Sub W, #Val,wW
BTFSS STATUS,0 Skip,CS

GOTO $+3 Jump APC+3
BTFSS STATUS,2 Skip,EQ

(jump if lower)
; Skip_LO (CS and NE) Comp #Val,W and skip if lower

SUBLW VAL Sub W, #Val,wW
BTFSS STATUS,2 Skip,EQ
BTFSS STATUS,0 Skip,CS

(jump if higher or same)
; Skip_LS (CS) Comp #Val,W and skip if lower or same
SUBLW VAL Sub W,#Val,W
BTFSS STATUS,0O Skip,CS
(jump if higher)

It should be noticed that the immediate value can be replaced with a variable.

For checking if W is between two limits Low and High, the usual algorithm works:
If (W) < Low, set Carry
If (W) > High, set Carry
Otherwise clear Carry
This can be implemented with 6 instructions.

One can save several instructions and more cycles by writing the next instructions. The condition
is, however, that "Low" is greater than zero (1 or more), and "High" is lower than 16°FF (254 and
less). Of course, "Low" is less than or equal to "High".

MOVWF TEMP Move W,Temp ; temporary register

SUBLW LOow-1 Sub W,#Low-1,W ; (Low-1)-(W]), CS if positive, Low >= (W)
BTFSC STATUS,0O Skip,CC

GOTO $+3 Jump APC+3 ; exit with Carry Set

MOVLW HIGH+1 Move ZHigh+1,W

SUBWF TEMP Sub W, Temp ; (Temp)-High, CS if positive, (Temp) >= High

6.5. Absolute value and saturation
When comparing two variables, the absolute wvalue of their difference is easily calulated, but the
difference must be lower than 128 = 16780.

JON-DIDEL 17:46:53 36/11/63 8387 @TYPO:#MMO:JON:@TYPO:#MMO:JON:PICSOFT.TF 7

RIC324

Programming the PIC -8 - LAMI-EPFL and “DDIDEL. Oct 2003

IVART-VAR2| --> W |Var1-Var2| --> W

MOVF VAR1,0 Move Varl,wW

SuBLW VAR2 Sub W,Var2,w

MOVWF TEMP Move W, Temp

BTFSC TEMP,7 TestSkip,BC Temp:#7 ; sign bit
SuBLW 0 Sub W,#0,wW

Frequently, a value must stay between limits. For positive numbers, negative saturation at value Min
included (any value of the variable lower than Min will be replaced by the value Min) is written:

MOVLW MIN Move #Min,W
SUBWF VAR, 1 Sub W,Var
BTFSS STATUS,0 Skip,CS

CLR VAR Clr Var
ADDWF VAR, 1 Add W,Var

Positive saturation at value Max included (any value of the variable higher than Max will be replaced by
the value Max) is written:

MOVLW MAX Move #Max, W
SUBWF VAR, 1 Sub W,Var
BTFSC STATUS,0 Skip,CC

CLR VAR Clr Var
ADDWF VAR, 1 Add W,Var

Counters frequently have to saturate as shown in next figure.

Inc Var ¢ 255 Dec Var 2% .
Skip,NE Skip,NE Spture & 1 256
P P Inc Var
Dec Var Sature a 255 Inc Var Move # -(Max+1),W
o 0— Add Var,wW Max %'—_DJI
Skip, NE
Test Var 2] 7 Test Var 2] S < Dec Var
X X ature 3 0
Skip, EQ Skip, EQ Sature a Max
Inc Var Sature 3256=¢ Dec Var 5 e
T — 0

picg2u2

6.6. Multiprecision and BCD operations

Multiprecision and BCD is not as easy to handle as with other 8- or 16-bit processors. Microchip
documents a set of Utility Math Routines. Multiprecision counters will be given in section 7.2.

16-bit registers are sometimes required because 8-bit operations overflow, as shown in section
6.4. Since the AddC and SubC instructions available in other processors are not implemented, these
instructions have just to be emulated.
;Add Nb1.16,Nb2.16 (Nb1+Nb2 —-> Nb2)

MOVF NB1LOW,0 Move Nb1Low,W

ADDWF NB2LOW, 1 Add W,Nb2Low

MOVF NB1HIGH,0 Move Nb1High,W; Must be < 16°FF
BTFSC STATUS,0 Skip,CC

ADDLW 1 Add #1,W

ADDWF NB2HIGH, 1 Add W,Nb2High

6.7. Indirect access

The file select register FSR (at address 4) is a pointer to the register set of the PIC. It can be
written and read from address 4. When accessed at address 0, the processor executes an indirect
transfer with the pointed-to register. The curly braces are used with CALM to show indirect access.

For instance, if FSR content is 16712, Move FSR,W will be executed as a transfer of location 4
content to W, and W will get a 12. Move {FSR},W will be translated by the assembler as a move
from location O to W, but that location does not exist: the processor takes the data inside register 4
as an address, and in our example it will get from location 12 a content to be put in W.

MOVF 0,0 Move {FSR},W [z]

MOVF 0,1 Move W,{FSR} [none]
For instance, if the averave of incoming numbers are to be calculated ovet the last 4 numbers (sliding
average), the simplest is to reserve a memory block from address 30 or 40, and increment the pointer
circularly by never allowing bit 2 to be set. Old data is taken out of the table and new data
introduced. A 16-bit register is required to accumulate the 4 consecutive values (that may be divided
by 4 when requred, see section 5.5)

JON-DIDEL 17:46:53 36/11/63 8387 @TYPO:#MMG:JON:@TYPO:#MMG:JON:PICSOFT.TF 8

RIC324

Programming the PIC -9 - LAMI-EPFL and “DDIDEL. Oct 2003

MOVWF 0,0 Move {FSR}, W
SUBWF W,PpmLow Sub W,PpmLow
BTFSS STATUS,O Skip,CS
DEC PpmHigh Dec PpmHigh
MOVWF PpmValue,0 Move PpmValue, W
MOVWF O Move W, {FSR}
ADDWF PpmLow, 1 Add W,PpmLow
BTFSC STATUS,O Skip,CC
INCF PpmHigh, 1 Inc PpmHigh
INCF FSR,1 Inc FSR
CLRF FSR ; Clear bit Clr FSR:#2 ; Clear bit 2
2
6.8. Tables

There is no addressing mode to access data in program memory, except on the 16F87x family,
where the EeAdrH/EeAdr 14-bit register allows to point anywhere in memory. The "RetMove" instruction
is a nice trick to access data: that special subroutine return instruction brings back into W the B8-bit
value put in the instruction. The routine which returns the n‘th value of a table is simply

ADDWF PCL,W Table: Add W,PCL
RETLW VALO RetMove #Val0,W
RETLW VAL1 RetMove #Vall,W

A macro makes these tables easier to write and read. With the CALM assembler, the macro
parameters are not listed with the macro name, they are labeled %1, %2 within the instructions of the
macro.

DD MACRO VAL .Macro DD

RETLW VAL RetMove #%1,W
ENDM .EndMacro
TABLE Table:
ADDWF 2 Add W,PCL
DD VALO DD Val0
DD VALO DD Val1

Tables are frequently used for replacing function calculation or compensating for nonlinearity. They
cannot cross a 256-instruction boundary. It is safe to add a conditional test at the end of a table so
the assembler will signal the error:

TABLE Table:

7?77 Af APC .GT. 167100 ; Over first page?
I page overflow ! ! page overflow !

777 .Endif

The last element of a table can include instructions. E.g., if a table has to be scanned circularly,
as it is the case for a stepping motor, the last state will be preceeded by a Cir Pointer instruction
(see Section 10.1).

6.9. Computed “"goto”

Since the PC (program counter) can be accessed as a register, computed jumps are easy within
the current page: the Move W,PCL will continue execution at the address prepared in W. But this is
an 8-bit instruction, the PC will stay in the same page of 256 positions! Move W,PC could be written
Jump {W}.AND.16°FF+PCLATH*16"100.

A "Jump table" is also easy to implement. For instance, if it is required to jump to DoO, Dol,
Do2 according to a variable "Select" taking the values 0, 1, or 2, the table is made of the
corresponding jumps.

MOVF SELECT Move Select,W
ADDWF PCL Add Ww,PCL
GOTO DOO Jump DoO
GOTO DO1 Jump Do1
GOTO DO2 Jump Do2

It is safe to verify that the table is in the same page, and the PclLath register (section xx) must
be prepared it the able is not in the page defined by this PcLath register.

The instruction Add W,PCL can be used to execute a stream of instructions of variable length.
For instance, if a pulse of O to 5 microseconds (4 MHz processor) must be sent to some pin, loading
W with a value between 5 and 0 and executing the following instructions solve the problem.

JON-DIDEL ~ 17:46:53 36/11/63 8387 @TYPO:#MMO:JON:@TYPO:#MMO:JON:PICSOFT.TF 3

RIC324

Programming the PIC - 10 - LAMI-EPFL and “DDIDEL. Oct 2003

ADDWF PCL Add w,PCL

BSF PORT,PIN Set Port: #Pin
BSF PORT,PIN Set Port: #Pin
BSF PORT,PIN Set Port: #Pin
BSF PORT,PIN Set Port: #Pin
BSF PORT,PIN Set Port: #Pin
BCF PORT,PIN Clr Port: #Pin

7. Pages and Banks
7.1. 8-bit pages

There are two page limitation on the PICs. When operations are performed on the PCL register,
only the 8 low bits of the PCL are modified, and the 8 upper bits are taken from the PcLatH register.
When tables are not all in page zero, it is important to load the PclLath register with the current page
value:

XXX: MovlWwW $/256 XXX: Move #APC/256,W
MovF PCLATH,1 Move W,PcLatH

At the end of the table, one check that the page number is still the same
Af APC/256 .NE. XXX/256
I Page error with table xxx

7.2. Program pages

Jump and Call instructions on the 14-bit instruction processors have 11 bits for the address. 2k
bytes of memory can hece be addressed, up to address 16°7FF. Several PICs have more memory. In
this case, one should carefully plan what will be in low memory and what in higer pages. The PclLatH
register has to be prepared when jumping from onde block to another. With Calm, the addresses have
to be masked. See www.didel.com/picg/doc/DocPage.pdf (in French) for more details.

7.3. Variable banks

PIC instructions have a 7-bit field for variables. The first 16720 are used by /O and control
registers. Two bits in the Status register (RP1 RPO) select one of 4 possible register banks. Sometimes
a register overlap the 4 banks, usually to access a register in e.g. bank!l, one need to ser bit RPO in
Status register, and come back to bank 0 after handling all the registers in bank 1.

8. Simple program examples

Every program can be implemented in several ways. Constraints on execution time, register count,
and program size always lead to many variants of the same program module. The objective here is to
give the best possible understanding of that flexibility, in order to allow the user to get the best
possible performance from their programs.

8.1. Wait loop and counters

Delays are easy to implement with a down-counter. The DecSkip,EQ (DECFSZ, decrement and skip
if result is equal to zero) is convenient for this.

The program must start with assembler definitions. Within the PIC family, there are several
processors with about the same set of instructions. In some cases, instructions for the PIC programmer
have to be inserted. Variables are declared on the Microchip assembler with their absolute position. On
CALM, the beginning address of the variables is specified by a .Loc, and then they occupy consecutive
locations. It is hence easy to add/remove a variable. As a surprising feature, varaibles must be declared
as 16 bits (.16 1 reserve one 16-bit word in memory). The reason is the PIC instructions are 12, 14
or 16 bits, and the universal CALM assembler has to be set in the 16-bit mode.

JON-DIDEL 17:46:53 36/11/63 8387 @TYPO:#MMG:JON:@TYPO:#MMG:JON:PICSOFT.TF 10

Programming the PIC

LAMI-EPFL and "DIDEL. Oct 2003

PicTest Oscillate all port bits

- 11 -

LIST P=16F84 .Proc 16F84
.loc 16°0C ; DebVar
CNT1 EQUOxC Cnt1: .16 1
CNT2 EQUOxD Cnt2: .16 1
ORG 0 .Loc O
DEB Deb:
MOVLW O Move #0,w ; Outputs
TRIS 5 Move W, TrisA
TRIS 6 Move W, TrisB
MOVLW B"10101010° Move #2°10101010,W ; initial value
LOOP Loop:
XORLW B 11111111~ Xor #Z2° 11111111, W
MOVWF 5 Move W,PortA
MOVWF 6 Move W,PortB
A AS$: DecSkip,EQ Cnt1; Delay (0.2 s)
DECFSZ CNT1 Jump AS$
GOTO A DecSkip,EQ Cnt2
DECFSZ CNT2 Jump AS$
GOTO A Jump Loop
GOTO LOOP .End
END

Initializing Cnt1 and Cnt2 to zero has not been done, since in this case a first waiting loop of a
different duration has no importance.

8.2. BCD counter

There are several ways to make a simple decimal counter. One must decide if two digits are
packed into a single byte, as below. One digit per byte makes it more straightforward to convert to
Ascii or 7-segments, but it is a matter of few instructions and microseconds, and packing saves
registers.

The IncBCD routine increments register CntBCD and returns with carry set when the 99 to 00
overflow occurs. The incremented digits are compared to 9 and if the result is larger, a 6 is added in
order to bring the digit to zero and add a carry to the higher digit.

With a second program, testing for non-decimal value is done in the same manner as when a
hardware asynchronous counter is wired from a binary counter, i.e. an AND gate resets the counter
when it reaches state 271010. The usage of two consecutive skip instructions has been explained in
section 6.1.

INCBCD
INCF
MOVF
ANDLW
SUBLW
BTFSC
RETURN
MOVLW
ADDWF
MOVF
ANDLW
SUBLW
BTFSC
RETURN
MOVLW
ADDWF
RETURN

INCBCD
INCF
BTFSC
BTFSS
RETURN
MOVLW
ADDWF
BTFSC
BTFSS
RETURN
MOVLW
ADDWF
RETURN

CNTBCD
CNTBCD,wW
B°00001111°
S

STATUS,0

6

CNTBCD
CNTBCD,wW
B°11110000°
0x390
STATUS,0

0x60
CNTBCD

CNTBCD
CNTBCD, 1
CNTBCD,3

6

CNTBCD
CNTBCD,4+1
CNTBCD,4+3

(2%%4)%6
CNTBCD

IncBC

IncBC

D:

Inc CntBCD

Move CntBCD,W

And #2°00001111,W ; Keep LSD (least significant digit)
Sub W, #Z9,W ; If W > 9, (9-(W) negative) add 6 to CntBCD
Skip,CC ; ! inverted carry

Ret ; no correction

Move #6,W

Add W,CntBCD

Move CntBCD,W

And #2°11110000,W ; Look at MSD

Sub #16°90,W

Skip,CC

Ret ; No correction

Move #16760,W

Add W,CntBCD ; Carry Set if overflow

Ret

D:

Inc CntBCD

TestSkip,BC CntBCD:#1
TestSkip,BS CntBCD:#3

Ret
Move #6,W
Add W,CntBCD

TestSkip,BC CntBCD:#4+1
TestSkip,BS CntBCD:#4+3

Ret

Move #(2xx4)x6,W ; Another way of handling tens
Add W,CntBCD

Ret

If one have to reduce program execution time and enough program memory is available, as is

frequently the case,

one can just put the

"IncBCD" function in a table. Carry and Zero bits are

updated correctly. A macro is useful to write the data for the table in a more compact way.

JON-DIDEL

17:46:59 30/11/03 8987

QTYPO:#MM6 - JON: @TYPO: #MMO: JON:PICSOFT. TF 11

RIC324

Programming the PIC - 12 - LAMI-EPFL and “DDIDEL. Oct 2003

CALL INCBCD Call IncBCD
INCBCD IncBCD: ; Increment CntBCD
MOVF CNTBCD,wW Move CntBCD,W
CALL TAINCBCD Call TalncBCD
ADDLW 1 Add #1,wW ; That’s done !
Move W,CntBCD
TAINCBCD
ADDWF PCL,W ; The table uses 160 program words (min 9x16+10)

; all in the same block of 256 locations
; Macro "DD” is 16 lines long

TalncBCD:
Add Ww,PCL
D8 0,1,2,3,4,5,6,7
D8 8,16°0F, 0,0,0,0,0,0 ; O to 9, then invalid
D8 16710,16°11, ...
D8 16’18,16°1F, 0,0,0,0,0,0 ; 10 to 19
D8 16°90,16°91, ...
D8 16°98,16°FF, 0,0,0,0,0,0 ; 90 to 99
Af (APC.AND.255) .GT. (IncBCD.AND.255)
.Error Block boundary overflow
.Endif

9. Serial transfers

Serial transfers are simple and efficient when the microcontroller is a master (generates the clock)
and the slave is a special circuit that can follow the rate imposed by the controller. Errors frequently
occur due to a simple naming problem. Inputs and outputs are relative to the considered device. The
serial out pin of the microcontroller is sent to the "serial in" input of the device. MOSI (Master out,
slave in) is a good name to give the line; "In" or "Out" will eventually generate errors.

9.1. Serial out

Shifting data out or in on a serial port is a typical activity for a microcontroller. The data to be
shifted out is prepared in the "Data" variable. The RRC instruction is optimal for taking the decision on
all bits in an 8-time repeated loop.

The next figure shows how two branches are taken according to the Carry value. The figure at
right is more efficient, but suppose that only one instruction is executed (setting or clearing the data
port). It is also to be noticed that the falling edge of the clock is active for transfering the data inside
the distant receiver.

bsf PortA,bCK CkOn bsf PortA,bck CkOn

rrf Data,1 RR_C Data —— rrf Data,1 RRC Data——

btffs Status,0 Skip,CS —— btfsc SFR,0 Skip,CC ——

goto 0ff$ Jump Off$ —— bsf PortA,bData DataOn

bsf PortA,hData DataOn btffs SFR,0 Skip,CS w

goto N$ Jump N$ — bef PortA,bData DataOff

bef PortA,bData Off$: DataOff bef PortA,bCK CkOff iw

bef PortA,bck N$: CkOff 1 ck 1
Ck L picsoft20 Data T T

picsoft21 Data I I

The clock polarity and position depends on the application. The above example is intended to show
the methodology to be applied, and is not a general solution that can be copied and reused. Rotate
direction also depends on the application.

The Write loop can also be written in two different ways. A counter by 8 is the most common.

Routine Transfer 8 bit serially

in: DataOut, transfered LSB first
mod: DataOut, C1

WRITE Write:
MOVLW 8 Move #8,\/\/
MOVWF C1 Move w,C1

L L$:
RRF DATAOUT RRC DataOut
BTFSC 3,0 Skip,CC
DATAON Da.taOn (macro Set PortA:#bData)
BTFSS 3,0 Skip,CS
DATAOFF DataOff (macro Clr PortA:#bData)
CKON CkOn (macro Set PortA:#bCk)
CKOFF CkOff. (macro Clr PortA:#bCk)
DECFSZ Cc1 DeCSkIp,EQ Cc1
GoTo L Jump LS
RETURN Ret

Setting the carry before the first shift and waiting for the register to be empty is just as fast,
and saves a variable.

JON-DIDEL 17:46:53 36/11/63 8387 @TYPO:#MMG:JON:@TYPO:#MMO:JON:PICSOFT.TF 12

RIC324

Programming the PIC - 13 - LAMI-EPFL and “DDIDEL. Oct 2003

Routine Transfer 8 bit serially at 100 kb/s

in: DataOut, transfered LSB first

WRITE mod: DataOut
BSF 3]0 Write:
L SetC
RRF DATAOUT L$:
MOVF DATAOUT,W RRC DataOut
BTFSC STATUS,2 Move — DataOut,W
RETURN Skip,NE
BTFSC 3,0 Ret
DATAON Skip,CC
BTFSS 3,0 DataOn
DATAOFF Skip,CS
CKOFF Ckon
BCF 3,0 CkOft
GoTo L circ
Jump L$

If the clock pulse must be longer, it may influence the selection of one of these two schemes.

9.2. Serial in

Shifting data in uses a quite similar mechanism. According to the data bit read, a "0" or "1" is
shifted into the data register.

Routing Get 8 bit (provide the clock)

out: Dataln read, transferred LSB first
mod: Dataln, C1

READ Read:
MOVLW 8 Move #8,W
MOVWF C1 Move — W,C1

L L$:
CKON Ckon
CKOFF CkOft
BCF 3,0 crc %
BTFSC 5,BDATA TestSklp,BC PortA:#bData Hal
BSF 3,0 SetC i*
RRF DATAIN RRC = Dataln
GoTo L Jump LS
RETURN Ret

The three instructions marked with * can be replaced by one (RRC PortA,W) if the data bit input
is wired on bit 0 of port A (i.e. bData=0)

Again, initializing the register with a one in high position, and waiting for that bit to be shifted
out is as fast and saves a variable.

Roitine Get 8 bit

out: Dataln read, transferred LSB first

READ mod: Dataln
MOVLW B"10000000° Read:)
MOVWF DATAIN Move #2°10000000,W
L Move W,Dataln
BCF 3,0 L$:
BTFSC 5,BDATA CkOn
BSF 3,0 CkOff
RRF DATAIN CirC . ;%
BTFSC 3,0 TestSkip,BC PortA:#bData ;*
RETURN SetC ;% .
coTo L RRC Dataln ; Carry out = 1 after 8 shifts
Skip,CC
Ret
Jump L$

9.3. RS232 serial transfers

Some 28-pins PICs have a built-in serial interfaces. By programming, it is easy to reach 9.6 kb/s
and even 38kb/s with a 4 MHz processor. Synchronous programming has to be well understood for
performing several tasks in parallel to the serial transfer.

The serial interface toward a PC is shown in figure 1. A start bit is followed by the 8 data bits
and 2 stop bits at least. For small applications, there is no need to bother with parity. The timer,
studied later, is adequate for defining the bit period. For transmitting data, when the timer overflow,
next bit is transmitted. For receiving data, the start bit is attentively checked. The timer for 1 and a
half period is set (minus the response time), and then the signal is sampled every bit period.

Adjustment of parameters and precision of the clock must be such that the last bit is sampled
JDN-DIDEL 17:46:59 36/11/03 8987 @TYPO:#MMO:JON:@TYPO:#MM6:JON:PICSOFT. TF 13

RIC324

JON-DIDEL

Programming the PIC - 14 - LAMI-EPFL and “DDIDEL. Oct 2003

correctly.

RS232 driver
TxD 2 RxD

LSB MSB

+5 to +12V
TxD (\

PIC t T Gnd
|—|—|—|—|—|'0|—|—|—’\ RxD 3 TxD — 4
RxD \l -5 to -12V

Stop bit

[=3

\\

Gnd 5 Gnd
—

T
8-pin plug
Male on PC side

Start bit Stop bit

Start bit

trserie picsoft3 lopic2b
More informations is available in French on pages www.didel.com/doc/

9.4. Bidirectional 1/0 and open-collector

Bidirectional signals are controlled by the "Tris" (tristate) direction registers. A "1" defines the
corresponding pin as an input, a "0" as an output.

i Processor PIC K
i bus

Write Port i
Read Port

0

Output Input

S ——

Write Tris i

If the ouput controls an open-collector line, as e.g. with I°C or 1-wire Dallas circuits, the data
line is entirely controlled by the "Tris" register, since one need only write zeros. A zero is hence
written on the port bit, and is issued on the bus when the corresponding tristate bit is clear.

picsoft42

One should be very careful if another bit of the same port is set or cleared. In this case the
processor must read the port (it reads the 8 bits), modify the requested bit, and write the result back.
This means that if our port is reading a one, that state will be copied in the output port. What is
required in such a case is to work on a copy of the port, and use only write instructions to the port.

10. DC motor control

DC motors are available within a great range of size, cost, and quality (efficiency, life-time). The
smallest ones are 6mm in diameter for a power of 0.1W. One-kilogram robots are quite happy with a
25mm 3 Watt motor, controlled by a 5V 1A amplifier (or 12V 0.5 A). On/off unidirectional control is
as straightforward as lighting a lamp. Bidirectional control is implemented with 4 or 6 transistors, now
available as miniature efficient ICs. Proportional control according to an analog value sent to a power
amplifier is not efficient. Switching the motor on/off with an adequate duty cycle is the solution. Low
cost motors have a high starting current which does not make them suitable for precise speed control.
Good motors are unfortunatly rather expensive.

10.1. PWM

Pulse Width Modulation, or PWM, is a widely used scheme to reduce the average power
transmitted to a lamp, resistor, or coil. The signal is active a percentage of the time, with a repetition
rate compatible with the application. Frequency above 25 kHz avoids acoustic effects. Too low a
frequency is not acceptable, especially with a low inertia stepping or synchronous motor. Hardwired
PWM is available on many microcontrollers. Low resolution PWM is easy to program on the cheaper
PICs, but there is always a problem with 0% or 100% duty cycles.

The simplest solution to generate PWM is to use an 8-bit
counter which increments at a constant rate, and add an 8-bit

picsoft32

value proportional to the PWM ratio. In order to reach 100%
with value 255 (and not 255/258), the solution is to use a 26
counter by 255. Adding the PwmRatio value to PwmCnt variable
may generate Carry, directly related to the PWM value.
wmRati
PwmCnt
0
Carry=0 Carry=1
PWM

The corresponding program module is given below. If this program is executed continuously on a
16C86 at 4MHz, it takes at least 12 microseconds (i.e. the rate period is about 3 ms). A 330 Hz

17:46:59 30/11/03 8987 @TYPO:#MMO:JDN:@TYPO:#MMO:JDN:PICSOFT.TF 14

RIC324

Programming the PIC - 15 - LAMI-EPFL and “DDIDEL. Oct 2003

PWM rate is a little slow, and an 8-bit resolution is clearly too high. The second program shows how
to reduce the resolution, and increase the PWM speed: a divide by 15 counter and 16 PWM values
are implemented by adding 16 at each cycle. The valid PWMRatio values are 0, 16710, 16720, .. 16°FO
(i.e. decimal values 0 to 15 followed by a SWAP instruction). This program is used in a synchronous
loop, or called by a timer interrupt..

8-bit PWM, < 330 Hz @ 4MHz

INCF PWMCNT Inc PwmCnt ;

BTFSC STATUS,2 Skip,NE ; Counter by 255
INCF PWMCNT Inc PwmCnt ;

MOVF PWMCNT ,wW Move PwmCnt, W

ADDWF PWMRATIO,W Add PwmRatio, W

BTFSC STATUS,O Skip,CC

MOTORON MotorOn ; (macro Set PortB:#bMotor)
BTFSS STATUS,O Skip,CS

MOTOROFF MotorOff ; (macro Clr PortB:#bMotor)

4-bit PWM, < 6 kHz @ 4MHz

MOVLW 0x10 Move #16710,wW ; PwmRatio xxxx0000
ADDWF PWMCNT Add W,PwmCnt
BTFSC STATUS,2 Skip,NE

ADDWF PWMCNT Add W,PwmCnt
MOVF PWMCNT ,wW Move PwmCnt, W
ADDWF PWMRATIO,W Add PwmRatio, W
BTFSC STATUS,0 Skip,CC

MOTORON MotorOn

BTFSS STATUS,0 Skip,CS

MOTOROFF MotorOff

10.2. PFM

PFM is another way to get proportional control. Figure below explain the difference. The
implementation is quite easy with a PIC, see www.didel.com/doc/DopiSmoo.pdf.

15% 40% 709

PWM

PFM

picsoftS

10.3. Rotary encoder

Rotary encoders, as found on computer mice are easy to decode if one just check for the edge
on one channel, and increment or decrement the position counter according to the value sampled on
the other channel. This scheme is quite convenient to implement with an interrupt on channel A, but
there is problems in case of glitches, or small oscillations around the positive edge of channel A.

A | | I
B (sampled I | | I |
Increment ! Decrement

position counter Direction ‘ position counter

picsoftS1 change

Sampling at high enough frequency A and B signals and applying the Sommer algortihm, as used
in all Logitech mice, is reliable and needs a minimum amount of time. It is quite suitable for
synchronous programming.

The principle is to keep the previous value A~ and B™, and compute the exclusive OR of combined
signals. This is performed going through two level of tables,, the second table calling the routine to be
performed when a step is done, usually incrementing or decrementing. It is a very efficient program,
not so easy to understand.

JON-DIDEL 17:46:53 36/11/63 8387 @TYPO:#MMG:JON:@TYPO:#MMO:JON:PICSOFT.TF 15

RIC324

LAMI-EPFL and "DIDEL. Oct 2003

bits 1,0

; Nop

Increment
Decrement

; Nop

Programming the PIC - 16 -
A (sampled |
A- |
B (sampled) |
B- |
A®B™ + + + +: - - -
A-®B |
picsoftS2 '
This program implement the R.Som Loop:
; (Logitech Inc) algorithm on a PIC Move OldPort, W
; To be executed synchronously or Call TaSwap
; lasts 12/13 us (single channel, 1 Move W, Temp
.macro d ; table element Move PortA,W
RetMove #2°%1,W And #2°11,wW
.endmacro Move W,OldPort
; PortA input encoder Xor Temp,W
; PortB out counter low Call Tadump
.Loc DebVar ; Test: display value on PortB
OldPort: 16 1 Move CntLow,W
Temp: .16 1 Move W,PortB
CntLow: .16 1 ; 16-bit cou Jump Loop
CLnOt(I:-Ilgh. 16 1 TaSwap:
I Add Ww,PCL
Begin: d 00
Move #2111 11111,W ;i d 10
Move W, TrisA
d 01
Clr w d 11
Move W,TrisB ; Outputs
Move PortA,wW Tadump:
And #2°11,wW Add Ww,PCL
Move W,OldPort Ret ;
Jump 11 ;
Jump D1 ;
Ret ;
11: Inc CntLow
Skip,NE
Inc CntHigh
Ret
D1: Dec CntLow
Skip,NE
Dec CntHigh
Ret
.End
11. Stepping and synchronous motor control

11.1. 2-phase motor

Two phase stepping motors are available in many shapes and powers. The power to weight ratio is
not very good, especially due to the fact that if the requested torque is too high, the motor will lose
it synchronization and oscillate. The number of steps per turn depends on the windings and poles. In
the example below, four coils (logically seen as 2 coils) provide 4 steps per turn, or 8 steps in the

half-step mode.

o

W

Cu

5

"

I
O
N

7.

®9 69, G

A

5

® O

picsoft34 B”

Stepping motor controllers are available with a built-in up/down counter,

decoder,

and power

amplifier. The cost of these cicuits is much higher than that of a PIC, which is easy to program to

generate the required sequence.

are directly controlled by the microcontroller outputs.

JON-DIDEL 17:46:53 36/11/63 8387 @TYPO:#MMG:JON:@TYPO:#MMG:JON:PICSOFT.TF 16

Recent miniature low dropout NMOS transistors or DC-motor bridges

Programming the PIC - 17 - LAMI-EPFL and “DDIDEL. Oct 2003

For instance, The program for a 4-phase motor is simply written

Clr VarStep
LoogYlove VarStep, W
Inc VarStep
Call DoStep
Move W,PortB
; delay according to rotation speed
Jump Loop
DoStepdd w,PCL
DD 2°0101 ; AA”B B’
DD 271001
DD 2°1010
Clr VarStep
DD 2°0110

11.2. 3-phase Lavet bidirectional motors

Watch motors are unidirectional. A trick in the magnetic circuit allow the motor to step always in
the same direction with a single coil pulsed with a low duty cycle (i.e. a very low power).
Programming such a motor is just a question of generating pulses of the correct duration. No such
motor is commercially available, but it is easy to dismantle a Swatch or a kitchen clock and play with
it. Due to the high resistance of the coil, a microcontroller output can be directly used.

Large (30mm in diameter) bidirectional watch motors are now available as the switec motor,
including a 180:1 reduction gear. The dynamic torque is about TmNm at 1 RPM. Max speed is 2 RPM.

oA
W2 B
e C
© @ ©) @ ® ®
CBA= 100 101 001 o1 010 M0 picsonas

The routine for making a complete turn and stop is easy to write. Variable "Step" is a pointer to
the table. In the example below, the 3 wires of the motor are connected to portB, bits 2..0. No stop
is required after the first three steps, as shown in the above figure, but a full Tms is recommended
before optionally asking for the next step, hence the 7 ms for one isolated turn.

Rouiine and stop in a no-power state. Duration 7ms

ONETURN OneTurn:
MOVLW 7 Move #7,W
MOVWF STEP Move W,Step ; Point moteur position
A MOVF STEP,W A$: Move Step,W
CALL TASTEP Call TaStep
MOVWF 6 Move W,PortB
CALL ONEMSDELAY Call OnemsDelay
DECFSZ STEP DecSkip,EQ Step
GOTO A Jump A$
RETURN Ret
TASTEP TaStep:
ADDWF PCL Add W,PCL
RETLW 0 RetMove #0,W ; hever read
RETLW B"00000000° RetMove #2°00000000,W ; Step=1, last step
RETLW B"00000101° RetMove #2°00000101,W
RETLW B’00000100° RetMove #2°00000100,W ; M2 MC M1
RETLW B"00000110° RetMove #2°00000110,W
RETLW B"00000010° RetMove #2°00000010,W
RETLW B"00000011° RetMove #2°00000011,W
RETLW B00000001° RetMove #2°00000001,W ; Step=7, first step

Of course, in most applications, the steps of this program have to be executed within an interrupt
routine triggered by a 1-ms timer (section 12.2). Bidirectional operations are also requires. The routine
that executes a positive or negative step, according to a direction bit, is initialized by clearing the Step
variable and can be written:

JON-DIDEL 17:46:53 36/11/63 8387 @TYPO:#MMG:JON:@TYPO:#MMO:JON:PICSOFT.TF 17

RIC324

Programming the PIC - 18 - LAMI-EPFL and “DDIDEL. Oct 2003

TestSkip,BS Var:#bStepDir

Jump Back
; Forward
Move Step,W
Inc Step
Add w,PCL
bb 001 ; O
bb 011
bb 010
bb 110
bb 100
Clr Step ; 5, next is O
bb 101
Back:
Dec Step
Inc Step,W ; test if -1
Move #5,0
Skip,NE
Move W,Step
Add w,PCL
bb 001 ; O
bb 011
bb 010
bb 110
bb 100
bb 101 ; B

11.3. 3-phase smoovy motors

Synchronous motors need an angular sensor and a rather complex electronic in order to give their
best performance. When miniaturization is concerned, synchronous 3-phase motors is the only way to
reach small dimensions (down to 1.9mm) and high power/weight ratio. The smoovy motors are available
in 3mm and bmm diameter. Minimotor/Micromo proposes a 1.9mm motor controlled by a box 1000
times larger. Synchronous motors can be controlled as stepping motors, with the usual problems of
stepping motors. A detailed presentation of open-loop control of the smoovy, including the efficient
PFM scheme for a smooth rotation at any speed, is available in www.didel.com/doc/DopiSmoo.pdf.

12. Interfacing the analog world

When an A/D converter is not available, and an external serial |/O converter must be saved,
several solutions allow conversion of voltage, current source, or resistor value into time or pulse trains,
and usage of the timer or software loops to get an analog value equivalent.

The usual solution (fig a below) is to load a capacitor through the variable resistor to be
measured. When the voltage on the capacitor is higher than the minimal one-level for the PIC input,
about 1.2 Volts, the processor stops measuring time, and usually deactivates the A output to discharge
the capacitor.

A better scheme is to use the bidirectionality of the ports to rapidly charge or discharge the
capacitor. In figure b) below, the capacitors are loaded by a 2 microsecond pulse, and discharge in a
few ms by the resistor. Two channels are preferably used for a potentiometer (fig c), in order to get
a very strong symmetry over the span, and some independence of component value.

a) ‘
pic A A !
5V
B ‘ 1.2V threshold
g —
J sk
bl o v
Charge SV

Variable

\J resistor
q “w o
—_— :Discharge %\\\\\\\\\\\\\\\\é

Measured duration

T

c) 43V

PIC | A A rl
oV s
T | E— —

SV

ou
—_ D2 T

picsoft41

PWM or PFM signals followed by an R/C filter, or a better filter if required, can provide a low
frequency analog output. This may be useful for some sensors, when a generated analog voltage has to
be compared with a sensor value, in order to adapt some variable.

JON-DIDEL 17:46:53 36/11/63 8387 @TYPO:#MMG:JON:@TYPO:#MMG:JON:PICSOFT.TF 18

RIC324

Programming the PIC - 19 -

Recent PICs have all several 10-bits A/D converters.

disappeared.
13. Multitask and real time

13.1. Synchronous programming

LAMI-EPFL and "DIDEL. Oct 2003

The need to do

it by software has

Synchronous programming means that all the Loop:
operations the program has to do are selected within a 0p1: |
loop of constant duration. Devices with precise timings Motor 1
are controlled every loop or every n loops. Other tasks control
. . . Executed
are scheduled according to the previous task, to their Op2: | every loop
priority, or to the raising of flags asking for operation. Other fast task constant duration
Resynchronization is performed by the timer if the to avoid jitter
. . of next tasks
processor has one that can be used for this. Otherwise, _
it is easy to add a wait loop, defined by a parameter Scheduling
adjusted for every task. No interrupts are allowed when
synchronous programming is implemented. Interrupts are Executed
good only for low-performance real time, and can Task1 fo"oeg;’ 3
guarantee real-time precision on only one high-priority
channel. Executed
Taska Taskb | | according
to task
[[decisions
[
Timer flag
Resync or wait
loops
picsoft31 |

The loop is typically 100 us or less, in order to service a high frequency communication or motor
controlled task. This means the operation executed at every loop is 10 to 20 instructions (with a low
speed 4MHz PIC). Switching between tasks takes several instructions. Long tasks have to be cut into
pieces. It is easy to load the address of the next instruction to be executed into a register and go
back to the loop. With the PIC having a single Work register, nothing has to be saved if the program
is cut at the appropriate place. The scheduler will continue execution during the next loop.

Round-robin scheduling is programmed with a scheduling index incremented circularly at every
loop. In the case of two tasks, one can write (Schindex is cleared at start-up):

MOVF SCHINDEX, W Move Schindex, W

INCF SCHINDEX Inc Schindex

ADDWF PCL Add Ww,PCL

GOTO PRIOTASK1 Jump PrioTask1

GOTO PRIOTASK2 Jump PrioTask2

CLRF SCHINDEX Clr Schindex
LASTTASK LastTask:

With the low priority scheduler, the next task is prepared by the current one. It could be deemed
a "please do this afterward" algorithm.

MOVLW OxFF&TASKA Move #16°FF.AND.TaskA,W ; start-up initialization
MOVWF NEXTTASK Move W,NextTask
TASKA TaskA:
. do the work ... do the work
MOVLW OxFF&TASKB Move #16°FF.AND.TaskB,wW
MOVWF NEXTTASK Move W,NextTask
GOTO TASKDONE Jump TaskDone

One must take care of the page where the scheduling loop and the tasks are. Adequate grouping
is required.

13.2. Timer

The PIC timer can be used to guarantee that the synchronous loop is of constant duration. The
timer is tested by a waiting loop, and reloaded when the loop duration is reached. No interrupt is
required in this case, since the program has nothing else to do aside from waiting to begin the next
loop iteration.

JON-DIDEL 17:46:53 36/11/63 8387 @TYPO:#MMG:JON:@TYPO:#MMG:JON:PICSOFT.TF 13

RIC324

Programming the PIC - 20 - LAMI-EPFL and “DDIDEL. Oct 2003

Test timer overflow flag and increment PortB when set

ORG © .Loc O

MOVLW (o] Move #0,wW ; Outputs

TRIS PortA Move W, TrisA

TRIS PortB Move W, TrisB

MOVLW B°00000111° Move #2°0000011] ,Rfescaler :256

OPTION Move W,Option

CLRF TMRO Clr TMRO ; First loop same length
LOOP Loop:

INCF PORTB Inc PortB ; Every 256 x 256 us
w BTFSS 0xB,2 W$:TestSkip,BS IntCon:#TOIF ; test Timer Overflow Interrupt Flag

GOTO w Jump w$

BCF 0xB,2 Clr IntCon:#TQlFclear the flag

GOTO LOOP Jump Loop

Most programs use the timer to start a regular interrupt in which all regular tasks must be
performed, e.g. as seen previously, doing a motor step. When several tasks are controlled by interrupt,
latency due to the termination of previous interrupt may be a problem.

Increment PortB by main program and
increment PortA by Timer interrupt

ORG 0 .Loc O
GOTO DEB Jump Deb
.Loc 4 ; Interrupt every 256 x 16 us, will increment PortA
ORG 4 ; Save F W in a typical application
; Save F W ; Reload the timer
BCF INTCON, 2 Clr Intcon:#2 ;TOIF
DECFSZ CINT DecSkip,EQ Cint
GOTO F Jump F$
INCF PORTA Inc PortA ; Every 256 x 256 x 16 us = "1s
F F$:
; Restore W F ; Restore W F
RETFIE Retl
; Main program
DEB Deb:
MOVLW (o] Move #0,wW ; All outputs
TRIS 5 Move W, TrisA
TRIS 6 Move W, TrisB
MOVLW B°0000011~ Move #2°0000011 ;WPrescaler :16
OPTION Move W,Option
MOVLW B“10100000° Move #2°10100000,HME and TOIE on
MOVWF INTCON Move W, IntCon
Loop: ; Main program increment PortB
LOOP Inc PortB
INCF PORTB ; Waiting loop 65 ms
A$: DecSkip,EQ C1
A DECFSZ C1 Jump A$
GOTO A DecSkip,EQ C2
DECFSZ c2 Jump A$
GOTO M Jump Loop
GOTO LOOP

14. Real time debugging

Debugging an application with real time constraints implies that only a few microseconds spy
instructions can be inserted. See www.didel.com/picg/doc/AideDebug.pdf. The program below is not so
useful, but it is a good example of tricky programming.

Measuring operation time cannot always be done by looking at the application signals. It is very
useful to have at least one or two lines that can be used as outputs or inputs. An output can
generate a synchronization pulse for the scope, or a pulse for measuring the duration of a loop, for
estimating the jitter in an almost-synchronous program. The pulses can be counted by some external
hardware, with the counter cleared or loaded by another output pulse. A pulse costs 2 microseconds.
In order to be able to estimate more easily the number of pulses on the scope, the following debug
module can be used (S10n and S10ff are macros, see section 5.8). Une pulse is removed every 4,
and every 64 pulses, the pulse lasts one full period. These numbers can be other powers of two.

Visualize event duration on scope - takes 7us

MOVLW 4 Move #4,W

ADDWF CYCNT Add W,CyCnt ; An auxiliary variable.
BTFSS STATUS,2 Skip,EQ

BTFSS STATUS,1 Skip,DS ; Remove 1 pulse every 4
S10ON S10n ; Activate test pin

BTFSS STATUS,2 Skip,EQ ; Longer pulse every 64
S10FF S10ff ; De-activate test pin

Using a serial line (clock and data) for transfering variables to be checked or modified is slow,
but very informative. Testing two switches in order to increment or decrement a given variable value
takes 5 to 10 microseconds and may be convenient in some cases.

JON-DIDEL 17:46:53 36/11/63 8387 @TYPO:#MMG:JON:@TYPO:#MMG:JON:PICSOFT. TF 20

Programming the PIC - 21 - LAMI-EPFL and “DDIDEL. Oct 2003

The CALM assemblers have been developed by Patrick Faeh while at
LAMI-EPFL. PIC modules have been adapted by Johann Rohner. The SMILE-NG
editor-assembler has been developed by Sebastian Gerlach when he was
undergraduate student at EPFL. Picolo is a new environment similar to SmileNG,
running on Linux, Apple and Windows; it has been developed by Fabien Zennaro
and Gilles Dubochet. A translator Microchip-CALM is being developed by Kaspar
Schiesser.

RIC324 JDN-DIDEL 17:46:53 36/11/63 8387 @TYPO:#MMG:JDON:@TYPO:#MMG:JON:PICSOFT. TF 21

