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Open-loop control for smoovy motors

RMB smoovy motors are synchronous motors which can be controlled open-loop with a
better efficiency using the PFM scheme proposed by O. Matthey. The basic idea is to
smoothen the transitions in order to achieve close to the ideal sinusoid excitation for which
synchronous motors are designed. The additional difficulty with miniature smoovy motors is
that rotor inertia is very low compared to the magnetic forces. Careful experiment has shown
that, with the PFM software constraints, trapezoidal transitions perform better. PFM is less
time-consuming than PWM and is easier to implement on simple microcontrollers like those
of the Microchip PIC family.

1. Interfacing

The smoovy, like all three-phase synchronous motors, has three coils around a rotor
which is just the best possible magnet. The rotating electromagnetic field drive? the rotor
with a phase shift that generate the active torque. If one can control this phase shift, as
brushless motors with Hall sensors and analog electronics do, one must overpower the motor
to be sure not to loose steps, and have the motor stop. Open-loop control will, however,
always be the only way to go with the smallest motors.

The coil resistance of the 3mm is about 40 Ohm, which is a major advantage since it
can be directly powered by some microcontrollers. Smaller motors do not have such a high
resistance. The more powerful 5 mm smoovy has a 14 Ohm coil resistance. Power
amplifiers have a resistance toward the supply or the ground which will define the efficiency
of the system. Coils are never controlled individually. They are connected in a star
configuration, with a common point which may provide an indication on the current. Triangle
connections are seldom used.
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Fig. 1 Star connection of the motor coils

The amplifiers are easy to build with miniature low resistance MOS transistors
(figure 2). Amplifiers are not required for the 3mm smoovy, if a reduced torque can be
accepted. Connecting outputs together reduces the internal equivalent PIC resistance and is of
course preferable, but the outputs for a given coil must be on the same port.
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16C84 RA2 Si3441DV R1= 0.1 Ohm
RB2 16C84 Rrat 16C84 Si3442DV R@= .07 Ohm 190P-6
16C54 RAQ RO
TPO101T R1= .45 Oh
1205 S R1f 120 Ohm 16C54 &, smoouy 3mn 16C54 TN0200T RO- © 25 Ohm SOT-23
X L RBS - »
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T RB3 smoovy Smm Si9952  R1= 0.4 Ohm SO-8
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L RE2 Si4459EY R1= 0.12 Ohm SO-8
RBO RB1 RO= 0.055 Ohm
RBO NDC7001C R1= 5 Ohm SOT-6
R2= 2 Ohm
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Fig. 2 Power amplifiers and typical resistance values

2. Fixed frequency smoovy control

A table defines the sequence of steps (figure 3). If the PIC has no other task to
perform, a simple delay loop defines the period between pulses, that is the rotation speed.
Due to its low inertia, the smoovy will start at rather high frequency (about 1000 RPM).
But for some lower speed, it may overshoot and not work correctly.

Half-steps are possible if the power amplifiers have an “enable” input. The processor
must in this case generate 6 signals, and there are 12 steps. The torque is less regular,
however, due to a lower total current when a coil is disconnected during a half-step. We

will no longer consider half-steps.
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Fig. 3 Step sequence for a 3-phase motor

The software corresponding to figure 3 is quite simple. In the example below, the 3
phases are connected to the three low bits of PortB. A pointer onto the step sequence table

Microchip source program

LIST P=16C84
cl EQU 0xC
c2 EQU 0xD
MOTPOS EQU OxE
;PORTB 16C84
BM1 EQU )
BM2 EQU 1
BM3 EQU 2
MDIRB EQU 0BO0OCCOO
; PROGRAM
BEGIN
MOVLW  MDIRB
TRIS PORTB
PER EQU 100
LOOP CLRF MOTPOS
L MOVLW PER
CALL DELAY
MOVF MOTPOS , W
INCF MOTPOS
CALL TAFORWARD
MOVWF PORTB
MOVLW 6
SUBWF MOTPOS , W
BTFFS STATUS,3
GOTO L
GOTO LOOP
DEL AYMOVWF cl
A MOVLW 32
MOVWF c2
B DECFSZ C2
GOTO B
DECFSZ  C1
GOTO A
RETURN
TAFORWARD
ADDWF 2

RETLW 0B100
RETLW 0B110
RETLW 0B0O10
RETLW 0BO11
RETLW 0B0O1

CALM source program with SmileNG editor— Test smoovy

.proc 16c84 ; 4MHz clock

waves [Registers | 1o 167c

C1: .16 1 ; local variables (counters, e
c2: .16 1

MotPos : .16 1 ; used by motor loop (motor
\Iariahles 16C84

bM1 =0 ; RBO Pin 7

bM2 =1 ; Pin 8

bM3 =2 ; Pin 9

mDirB = 270000000 ; all outputs

.Loc 0]
Begin:
Move #mDirB ,W ; Direction out
Move W, TrisB
Per = 100 ; 10ms --> 60ms/turn 16,6t/s 1000t
; min 20 for unloaded motor
Loop: Clr MotPos ; motor position index
M$: Move #Per ,\W
Call Delay
Move MotPos ,W
Inc MotPos
Call TaForward
Move W, PortB
Move #6 ,W ; 6 phases per turn
Sub W,MotPos ,W ; Compare #6,MotPos
Skip,EQ
Jump M$

Jump Loop

Rautine Delay multiple of 100us (4MHz clock)

in: W delay 0, 0,1 ... 25,5 ms
102w

mod:
Delay : Move W,C1
A$: Move #32 W ; loop 100us
Move w,C2
B$: DecSkip,EQ C2

Jump B$
DecSkip,EQ C1
Jump A$
Ret

Constant Motor

TaForward : ; Motor phases on bM3 bM2 b
Add W,PCL
RetMove #2°100,W ; MotPos = 0
RetMove #2°110,W
RetMove #2°010,W
RetMove #2011 ,W
RetMove #2001 ,W
RetMove #2101 ,W ; MotPos = 5

is inifializédBaP1zero, but is incremented before accessing the data. Hence, the first position
in the table is never accessed. At each step, the next value in the table is taken. When
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the pointer has reached position 6, it is reinitialized to zero.
3. Reorganizing the table

Instead of a table organized by consecutive states, a table giving the next excitation
according to the present one is more efficient, since there is no modulo-6 counter to
manage. The variable which corresponds to the excitation status of the motor is “Excit”. It
could even be read on the motor port itself, but since the PIC reads the output value and
not the internal output register, it is not recommended, especially in the case of capacitive
loads. The “Excit” variable is initialized at zero, and the next valid value is found
automatically in the table.

Unidirectional control

BEG Beg:
CLR EXCIT Clr Excit
LOOP Loop:
MOVF EXCIT,W Move Excit,W
CALL TAF ORWARD Call TaF orward
MOVWF EXCIT Move W, Excit
; Superpose other bits to be written on the port
MOVWF 6 Move W, PortB
GOTO M_0 Jump Loop
.macro d ; prepare data table
RetMove #2 %1 ,W
TAFORWARD .endmacro
ANDLW Ob111
ADDWF 2

RETLW  0b0O1T Ratine Motor

RETLW ob101

TaForward :

RETLW b0 11 And #2111 ,W
RETLW ob001 Add W,PCL
RETLW 0b110 d 001 ; any initial valid value
RETLW 0b100 d 101 ;0 001 --> 101 bM2
RETLW ob010 bM1 bMQ

d 211 ; 010 —-> 011

d 201 ; 011 —-> 001

d 110 ; 100 —-> 110

d 100 ; 101 —-> 100

d 210 ; 110 --> 010

4. Bidirectional control

Changing direction may be implemented with two separate tables, with the selection of
the table being made according to a variable or a flag. It is simpler, though, to have a
single table which includes two 3-bit excitation values corresponding to forward and
backward rotation (figure 4).

forward
000
o

backward

smoovypa2
smoovypa2 . . g . i .
Fig. 4 Bidirectional transition diagram

The corresponding excitation table can be written explicitly if a macro is defined to get
the correct set of bits at the right place. Due to the existence of a Swap instruction, the
forward value is placed in the upper 4-bits and the backward in the lower 4-bits.

The program loop is quite simple: according to the direction bit “bBack™ in a variable
named here “MotorStatus” (could be the same as “Excit”, where several bits are free),

swapping occurs and the motor can change direction at any state (if the motor speed allows
it).
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Bidirectional control (first solution)

MOVLW 1 Move #1,W
MOVWF EXCIT Move W, Excit ; Initialization
LOOP Loop:
MOVF EXCIT,W Move Excit,W
CALL TABIDIR Call TaBidir
MOVWF EXCIT Move W, Excit
BTFSS MOTORSTATUS ,bBACKWARD TestSkip,BS  MotorStatus : #bBack
SWAPF EXCIT Swap Excit
MOVF EXCIT,W Move Excit,W
ANDLW B 111~ And #2111 ,W
MOVWF PORTB ; Superpose other bits to be written on the port
GOTO LOOP Move W, PortB
Jump Loop
.macro dd ; prepare a table QxxxQy
RetMove #%1x(2%%4)+%2 W
TABIDIR .endmacro
ANDLW B 111~
ADDWF 2 TaBidir :
RETLW 1x16+1 And #2111 ,W
RETLW 3%16+5 Add W,PCL
RETLW 6x16+3 dd 1,1 ; hot supposed to get th
RETLW 2%16+1 dd 3,5 ; forward 1 ->3 /backw
RETLW 5%16+6 dd 6,3
RETLW 1x16+4 dd 2,1
RETLW 4%16+2 dd 5,6
RETLW 0Xx16+0 dd 1,4
dd 4,2
dd 0,0

It is in fact faster to have two consecutive tables, and switch according to the
“bBack” bit, stored as bit 3 within "Excit”.

Bidirectional control (second solution

LOOP Loop:
MOVF EXCIT,wW Move Excit,W
CALL TABIDIR Call TaBidir
MOVWF EXCIT Move W, Excit
ANDLW B°111~ And #2111 ,W
; Superpose other bits to be written on the port
MOVWF 6 Move W, PortB
GOTO LOOP Jump Loop
.macro dd ; prepare a table QxxxQy
RetMove #%1 ,W
.endmacro
TABIDIR TaBidir :
ANDLW B°1111° And #2°1111,W
ADDWF 2 Add W,PCL
RETLW 1 dd 1 ; not valid, arbitrary ne
RETLW 3 dd 3 ; forward 1 ->3
RETLW 6 dd 6
RETLW 2 dd 2
RETLW 5 dd 5
RETLW 1 dd 1
RETLW 4 dd 4
RETLW 1 dd 1 ; not valid
; When bBack bit is active
RETLW 1 dd 1 ; not valid
RETLW 5 dd 5 ; backward 1 -> 5
RETLW 3 dd 3
RETLW 1 dd 1
RETLW 6 dd 6
RETLW 4 dd 4
RETLW 2 dd 2
RETLW 1 dd 1

5. Synchronous programming

Getting step delays from a waiting loop is only possible for simple test programs.
Interrupts are not efficient, if supported, with microcontrollers. The solution is to do

synchronous programming, where all the operations the program has to do are selected within
a loop of constant duration. Motors and devices with precise timings are controlled every
loop or every n loops. Other tasks are scheduled according to the previous task, to their
priority, or to the vraising of flags requesting operation. More details are given in

[Nicoud98].
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Rewriting the previous program for the step control in the 100 us loop gives:

LOOP

DECFSZ
GOTO
MOVLW
MOVWF
GOTO

DOSTEP

MOVF
CALL
MOVWF

NEXT

More

STEPPERIOD
DOSTEP
PERI1OD
STEPPERIOD
NEXT

EXCIT,W
TAFORWARD
6

information on

www . didel.com/DopiSync. pdef.

between

Loop: ;
DecSkip ,EQ StepPeriod
Jump DoStep
Move #Period , W
Move W, StepPeriod
Jump Next

DoStep :
Move Excit ,W
Call TaForward
Move W, PortB

Next : ; continuation

synchronour programming can

6. Variable frequency control

In order to modify the rotation speed of the motor,
steps,

which is the

period.

Linear

period duration

non-constant acceleration, but the effect is usually insignificant.

every loop (e.g. every 200 us), the speed “Speed” is added to a counter “SpAcc”.

Excecuted every x us

be found on

one usually alters the delay
modification

provides a

A better and frequently simpler solution is to define a speed variable which represents
the frequency of the steps. This has the advantage of allowing synchronous programming. At

If the

counter overflows, a step must be made. With an 8-bit counter, minimum speed (= 1)
corresponds to a 51.2 ms step period (200 us loop), which is about 3 turns per second.
Theoretical maximum speed is 255 for a 200 us period (but there is a 400 us step every

256 steps), which is about 60,000 RPM.

smoo,

JON-DIDEL

With both the period approach and the speed approach, the digitalization problem is bad
at high speed (compared to processor speed). It is safer to use the available faster PIC or
Scenix processors and work with 16-bit precision. Our examples will be given with 8 bits,
assuming a speed value between 1 and 50 (20% jitter).

pim2

Speed Us

92

SpAcg

128 ’/_/l’d
64 <

Step

smoopfm 2

Fig. 6 Step frequency proportional to “Speed” variable

One may hesitate to clear the SpAcc register when it overflows. The jitter will be
reduced, but this jitter generates an average speed with a finer resolution. If SpAcc is reset
at every step, several increment values are ignored. For instance, there is no change in
speed between 32 and 37, since 32 x 8 = 256 and 37 x 7 = 259.

If the minimum speed value is too fast for some application, it is easy to increase the
synchronous loop duration, or to use a 16-bit SpAcc register, with the advantage of a wide
speed range with a short loop producing minimal jitter.
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; Excecuted every 200 us (compare with program module on

OP1  MOVF SPEED,W page xx)
ADDWF SPACC Op1: Move Speed , W
BTFSS 3,0 Add W, SpAcc
GOTO OoP2 Skip,CS
CLRF SPACC Jump Op2 ; No step if no overflow
MOVF EXCIT,wW Clr SpAcc ; optional
CALL TAFORWARD Move Excit,W
MOVWF EXCIT Call TaForward
MOVWF 6 Move W, Excit
OP2 ; continuation Move W, PortB
Op2: ; continuation

This program module does not execute in the same amount of time when no step is
executed. If required, it is easy to add a jump and several no-op instructions.

7. Variable frequency with PFM transitions

A major difficulty with synchronous motors is that they should be powered with sine
waves. At high speed (10000 RPM for an unloaded 3mm smoovy), the motor’s inertia
smooths things out, and so square waves are acceptable. O. Matthey has studied the
motor’s dynamics and proposes the PFM scheme with trapezoidal ramps as the best solution
on the PIC for smoothing rotational movement. Even with PWM hardware, smoothing the
steps of a stepping/synchronous motor at smoovy speed would not be easy.

PWM is well known: motor phases receive pulses with a fixed period but a variable
width (figure 7a). PFM, on the other hand, uses a fixed positive or negative pulse length
and a variable repetition period (figure 7b). When not implemented in hardware (no PIC
does this), software PWM implementations require two counters and are tricky to insert in a
synchronous programming concept (difficulty also arises when the PWM ratio is O or 1).

15% 40pe 709

PWM

PFM

smoopfm@

smoapind Flg 7 PWM versus PFM

PFM is easy to implement and is specially suited for synchronous programming or when
a fast timer interrupt (e.g. 200 us) is programmed: the PFM ratio is a value added at every
interrupt to a counter PfAcc. When this counter overflows (carry set), the next value is
sent to the motor phase. Otherwise (carry clear), the previous value is taken (figure 8).

92

64 48 |

PFM

smoopfm1

smoopfm1 . .
Fig. 8 PFM generation

The next figure shows approximately how one phase will be switched at every

transition, in the case of a very fast speed increase. The SpAcc value is taken as a

PfmRatio variable (trapezoidal waveform) and added to the PfAcc counter. When this counter

overflows, the next step value is sent to the motor phase.
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PFM | L L ET T
smoopfm
smoopfm . . . L.
" Fig. 9 PFM interpolation between phase transition
; End of program initialization
MOVLW INISPEED Move #IniSpeed , W
MOVWF SPEED Move W, Speed
CLRF SPACC Clr SpAcc
CLRF PFMACC Clr PfmAcc
; Endless synchronous loop
LOOP Loop: ; Fixed timing task
; Execute a PFM microstep 26 us duration (16C84/
MOVF SPACC,W Move SpAcc W
ADDWF PFMACC Add W, PfmAcc
MOVF EXCIT,W Move Excit,W
BTFSS 3,0 Skip,CS
SWAPF EXCIT,wW Swap Excit ,W ; CC, takes previous val
And #2111 ,W
ANDLW B 1111~ ; Superpose other bits to be written on the port
MOVWF 6 Move W, PortB
; next motor step?
MOVF SPEED,W Move Speed , W
ADDWF SPACC Add W, SpAcc ; PfmRatio
BTFSS 3,0 Skip,CS
GOTO NOSTEP Jump NoStep$
Cir SpAcc ; optional
MOVF EXCIT,W Cir PfmAcc ; optional
CALL TAF ORWARD Move Excit,W
MOVWF EXCIT Call TaForward
Move W, Excit
GOTO OoP2 Jump Op2
NOSTEP NoStep$ : ; Duration compensatio
MOVLW 3 Move #3,W
MOVWF C1 Move w,C1
A DECFSZ C1 A$ :DecSkip,EQ C1
GOTO A Jump A$
OP2 Op2: ; e.g. control a second motor at different speed
GOTO LOOP Jump Loop
Madle (unidirectional)
TAFORWARD i i .macro dd ; prepare a table QxxxQy
ANDLW B 111 RetMove #%hIK(2%x4 ) +%2 W
ADDWF 2 .endmacro
RETLW Ox16+1 TaF orward :
RETLW 1%16+5 And #2°111,W
RETLW 2x16+3 Add W, PCL
RETLW 3x16+1 dd 0,1
RETLW 4x16+6 dd 1,5 ; present ,next” motor e
RETLW 5x16+4 dd 2,3
RETLW 6X16+2 dd 3,1
END dd 4,6
dd 5,4
dd 6,2

JON-DIDEL
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