

http://www.didel.com/ info@didel.com

www.didel.com/diduino/PushButton.pdf

Push Button on Arduino pin 13

If you have an Arduino compatible boards, you can wire a push button of
any make and benefit from the documentation below. Adding the
protection resistor is not required if you avoid long depress actions in led
mode.

1 Diduino push button

The Diduino has added a push button and a protection resistor on pin 13.

Depending if pin13 is initialized as output or input, and button pushed or not, one have the
following situations.

We do not need to explain how to blink the led. For the push button, it is important to understand
the reading can be done different ways
1) the program wait till the button is depressed, execute the action and continues when the button
is released. This is a blocking action
2) the program check regularly if the key is depressed. If yes, the action is executed,
3) the interrupt mode is iniotialized; when the button is depressed, the action is executed. Usually,
a flag is set the program will check, do the action and clear the flag.

Bouncing of mechanical switches complicate the handling
of the switch signal. Typically for a small switch, bouncing
may create tens of pulses for several ms.

We of course use functionnal names resulting of #define declarations, e.g.
 #define PushOn (digitalRead(13)) // active high
or #define PushOn (PORTC & (1<<5))
PushOn is not an instruction; it is a boolean variable to be tested in a conditional instruction.
You surely know that PushOff is the same as !PushOn, no need to define it.

1) Wait on button depressed

The program stops in a waiting loop
 while (!PushOn) {delay (20);} // wait for action
After action, it wait for the button released
 while (PushOn) {delay (20);} // wait released
The delay is longer than the worse bouncing
duration, typically 20ms.

2) Non blocking decision

The program has several activities (read sensors,
set moteur speed, blink), but every 20ms it checks if
the button state has changed. This mean the previous
value read has to be saved in an variable named e.g.

oldPush and the present one under pushNow;
 pushNow = PushOn;

 if (pushNow && !oldPush) {.. action .. }
 OldPush = PushOn ;

3) Interrupt

The AVR processors can be programmed to detect
the change of value of any pin and call an interrupt
routine. If the main program must know about the
button, the interrupt activate a flag. Main program
check the flag instead of the button.
The problem is one need to deactivate the interrupt
during the bounces, that is use a timer that will
interrupt after 20ms and restore the interrupt for
handlind release situation.

Caution – internal pull-up

The Arduino designers were not
aware apparently that with the
AVR and most microcontrollers,
there are good reasons to
connect leds and button so they
are active low. A pull-up is
programmable inside the
controller and simplify the
wiring.
The pin13 schematic shows the
led and its resistor plays the role
of a pull-down.
On the AVR, a pull-up is
connecter in input mode if the
corresponding bit of the port
register is HIGH. This brings a
bad voltage of 2 volts on the
processor pin.

Definition file
We need several definitions for which we can hesitate on the most clear name:
PushMode could be named Pin13In and LedMode Pin13Out

#define PushMode pinMode (13,INPUT)

#define LedMode pinMode (13,OUTPUT)
#define PushOn (digitalRead(13))

#define LedOn digitalWrite (13,1)

#define LedOff digitalWrite (13,0)

#define PushMode clearBit (DDRB,5)

#define LedMode setBit (DDRB,5)
#define PushOn (PORTB & (1<<5))

#define LedOn setBit (PORTB,5)

#define LedOff clearBit (PORTB,5)

Remember, when reading the push button, one must be sure that the pull-up is not active.

Example 1: Alternate wait for button and led brinking periods

We want to blick n times after every push.
Led must be Off (no pull-up when reading
the button. This is easy because the two
modes are one after the other.

The complete program can be found under
www.didel.com/diduino/PushButton.zip

// Push1.ino Button trigger a set of blinks
.. definitions and setup

void loop () {

 // wait push

 LedOff; PushMode; // pull-up not active
 while (!PushOn) {delay (20);}

 while (PushOn) {delay (20);}

 // blink

 delay (500);

 LedMode;

 for (byte i=0;i<3;i++) {

 LedOn; delay (200);

 LedOff; delay (200);

 }

}

Example 2: Led13 is a realtime copy of the button.

A blocking function is not possible any more. One need to switch between the output and input
mode. When in input mode (button read), the Led is off even if the program asks is to be on. The
blinking must be as short as possible, which is not a problem.

Since we want to test the button while blinking, it will be necessary to save the led state
and reestablish it. A function will do the work.

//Push2.ino| Led copy button

... #define ...

byte saveLed;

byte GetButton () { // 1 if button on

 byte button=0;

 saveLed= (PORTB & (1<<5));

 LedOff; // no pull-up in push mode

 PushMode;

 if (PushOn) {

 button=1;

 }

 PORTB |= saveLed;

 LedMode;

 return button;

}

void setup() {

}

byte butNow, butOld;

void loop () {

 delay (10);

 butNow= GetButton();

 if(butNow && !butOld) {

 LedMode;

 LedToggle;

 }

 butOld = butNow;

}

Example 3: Button toggle the led
We need now to take a non blocking decision.

//Push3.ino Button toggle the led

... #define ...

byte saveLed;

byte GetButton () { // 1 if button on

 byte button=0;

 saveLed= (PORTB & (1<<5));

 LedOff; // no pull-up in push mode

 PushMode;

 if (PushOn) {

 button=1;

 }

 PORTB |= saveLed;

 LedMode;

 return button;

}

void setup() {
}

byte butNow, butOld;

void loop () {

 delay (10);

 butNow= GetButton();

 if(butNow && !butOld) {

 LedMode;

 LedToggle;

 }

 butOld = butNow;

}

Example 4: Debugging help

Insert in you program the function Stop (period);
where you wish to stop and continue.
To make it simple her, the period of the blinking
is the parameter. You can blink several times
once or repetidively with simple functions.

.. definitions, setup and GetButton ()

void Stop (byte nn) {

 do { // blink waiting for the

push

 LedToggle;

 delay (nn);

 } while (!GetButton());

 while (GetButton()){delay (20);}

//wait for release

 LedOff;

}

void loop () {

 delay (1000);

 Stop(100);

}

Example 5: Counting pushes

Counting how many depress on a switch has many applications. The mose useful is selecting a
program or an operating mode at power up, or giving a parameter.

What the routine must do is:
1.- Wait for a first depress of the button,
 set cntPous = 0
 When pressed, enter a loop
 a) cntPous +=1
 wait for release button and go to b
 b) When released
 initialize a timeout counter cOff
 wait for depress
 while checking timeout cOff++
 if depressed, goto a)
 if timeout, goto c
 c) Blink cntPous times

(1)

 while (!Pous) delay (5) ;

 cntPous = 0 ;

(2)

 while (Pous) delay (5) ;

 cntPous++ ;

 cOff = 0 ;

(3)

 while (cOff++ < 200) {

 delay (5) ;

 if (Pous) goto (2) ;

 cOff++ ;

 }

The program use a state machine. the 3 states 1, 2, 3 are named WaitFirst, Pushing, NotPushing.
A fast blinking show the user it is time to push the number of time he desires.
The instructions that confirm the number of pushes are very usefull.

Key instructions:
byte cntPous ;

byte cOff = 0;

while (cntOff < 200)

{

 delay (5);

 switch (etat)

 {

 case 1:

 if (!Pous) break;

 etat=2; break;

 case 2:

 if (Pous) break;

 cntPous++; cOff=0;

 etat=3; break;

 case 3:

 if (!Pous) break;

 cOff++;

 etat=2; break;

 } // end switch

} // end while

// TestCntPous.ino fast blink while waiting first push

// slow blinks to confuîrm number of pushes

#define PushMode bitClear (DDRB,5); PORTB=0;

#define LedMode bitSet (DDRB,5)

#define PushOn (PINB & (1<<5))

#define LedOn bitSet (PORTB,5)

#define LedOff bitClear (PORTB,5)

#define LedToggle PORTB ^= (1<<5)

byte cntPous; // global variable

//<<<<<<<<<<<< Fonction GetPous --> numbe of

pushes 1 2 3..

byte cli, cntOff = 0;

enum { WaitFirst, Pushing, NotPushing } next =

WaitFirst;

byte GetPous () {

 cntOff = 0;

 while (cntOff < 200) {

 switch (next) {

 case WaitFirst: // blink fast waiting for push
 LedOff; PushMode;

 if (!(PushOn)) {

 LedMode ;

 LedOn; delay (100); LedOff; delay (100);

 break;

 }

 cntPous = 0 ;

 next = Pushing; break;

 case Pushing: // wait release
 delay(5);

 PushMode ;

 if (PushOn) break;

 cntPous++ ; cntOff = 0 ;

 PORTC=cntPous; // optional test

 if (cntPous == 10) cntPous=9; // saturate

 next = NotPushing ; break ;

 case NotPushing:
 delay(5);

 cntOff++; //200x5 = 1 sec

 if (!(PushOn)) break ; // release

 next = Pushing ; break;

 } // end switch

 }

 next = WaitFirst;

 LedMode ; // blink cntPous time

 for (cli=0; cli<cntPous; cli++) {

 LedOn ; delay(200); LedOff ; delay(300);

 }

 PushMode ;

 return cntPous ;

}

void setup () {

 ModeLed;

 DDRC = 0b11111111; // optional test

}

void loop () {

 PORTC = GetPous (); // optional test

 delay (1000); // pas nécc

}

Library LedPush13.h

File PushLed13.h includes the definitions and the 3 functions used beforhands..

TestCntPous.ino can now be written;
//TestCntPousLib.ino

#include "PushLed13.h"

void setup () {

 ModeLed;

 DDRC = 0b11111111; // optional test

}

void loop () {

 PORTC = GetPous (); // optional test

 delay (1000);

}
jdn 151202

