

www.didel.com/WittySpecs.pdf

Witty specifications

The Witty is a 2-wheel unusual robot. With the slanted wheels it is never blocked in a box. Able to rotate, you have to understand the conditions that makes it move or

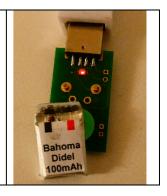
It is a fully compatible Arduino board, using as the Arduino Mini an external USB/Serial adapter.

A Bahoma Lipo power the Witty in a snap, no hard to insert small connector. Voltage is monitored with 2 leds.

Load www.didel.com/Witty.html to click on all our documentation.

General specs

Size	80 x 32 x 32 mm
Processor	AtMega 328P-AU
Motor and wheels	Vigor Bo-30 1:96 with Didel 32mm weels
Motor drivers	CS 7721
IR module	CHQ0038
Programming connectors	ISP 6 holes 1.27mm pich Gaia female 5 pins 1.27mm
Extension connectors	Gy521 2.54mm pitch
Switches	2x push button 1x SPD on/offs witch
Voltage and current	3.0V/40mA-5.5V/80mA (both motors free running)
	3.7V/200mA (both motors blocked)

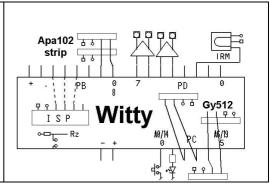

Power control

Bahoma Lipos are charged in 3 hours on the convenient Ucha module. See www.didel.com/Bahoma.pdf for details.

Any LiPo 3.7V lipo charger can be used if polarity is correct and charge current lower than 300mA (3C).

Check if the Bahoma magnets are clean before inserting. It may happen that the contact resistor is high. Interaction with the push button selecting a demo is good. But if the motor starts, the voltage drop is to high and the micro restarts.

With the 110 mAh Lipo, on can expect for more than 1hour of action.



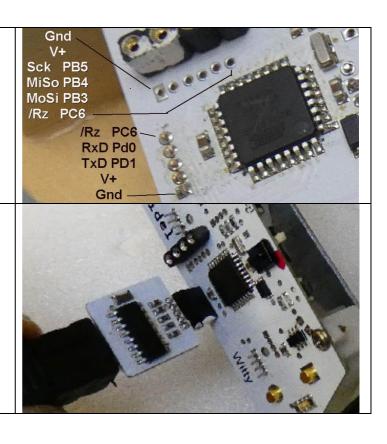
Power connection and pins

When powered by the LiPo, start up is immediate (2 seconds initial check and blinks). The Gaia programming adapter calls for a 340 driver, easy to install. At power-up with the driver, there is a 5 second delay for establishing the communication.

Witty microcontroller is an AtMega 328, initialized with the Duemilanove loader.

AVR328 pins								
	Pin	Port		Pin	Port			
	0	PD0	Rx	11	PB3	(s2 prog)		
	1	PD1	Tx	12	PB4	(s1 prog)		
	2	PD2	IRmodule	13	PB5	(Tell prog)		
	3	PD3	_	14	PC0	Pous active low		
	4	PD4	bRecG	15	PC1	Led active high		
	5	PD5	bAvG	16	PC2	(Ana pin4)		
	6	PD6	bAvD	17	PC3	(Ana pin3)		
	7	PD7	bRecD	18	PC4	I2C SCL pin3		
	8	PB0		19	PC5	I2C SDA pin4		
	9	PB1						
	10	PB2						

Pin assignement


Reprogramming the AtMega328

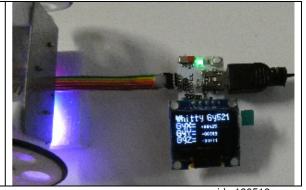
All Didel cards using an Atmel processor have a set of five 0.6mm holes, 1.25mm pitch, close to the processor.

Downloading programs

Downloading programs from the IDE environment uses a 5-pin connector compatible with the Gaia USB to 328 adapter.

Gaia always have male pins and microcontroller cards being programmed unfrequently do not need a connector; bending pins in holes is reliable.

Definition file beginning (see WittySoft.pdf)


```
// Witty.h C only
                                              // Witty.h
                                                          Arduino
#define bLed 1 // PORTC
                                             #define Led 15
#define LedOn bitSet (PORTC, bLed)
                                             #define LedOn digitalWrite (Led, HIGH)
                                             #define LedOff digitalWrite (Led, LOW)
#define LedOff bitClear (PORTC, bLed)
#define LedToggle (PINC^=(1<<bLed))</pre>
                                             #define Button 14
#define bPous 0 // actif à zero
                                             #define PushOn !(digitalRead (Button))
#define PousOn (!(PINC&(1<<bPous)))</pre>
                                             void SetupWitty{
void SetupWitty () {
                                              pinMode (Led,OUTPUT);
 DDRC = 0b000010; //Led out
                                              pinMode (Button, INPUT_PULLUP);
 PORTC = 0b000001; // pullup on bPous
```

Note: You may not like macros as we do. But we use them only at the lowest level, to give a better name to the function given to a pin. Note it is not recommended to use the low level digitalWrite, pinMode, etc inside the program; it destroys legibility and portability. See WittySoft.pdf and WittyLib for a more efficient way of programming the Witty.

Pythie

Replacing the Gaia module by the Pythie allows to connect an Oled on the Tx/Rx pins and use TerOled for displaying the program status in a more convenient way than on the screen terminal (data stays in place.

See www.didel.com/Pythie.pdf for more details.

jdn 190510