

http://www.didel.com/ info@didel.com

www.didel.com/WittySoft.pdf

Witty - software

The Witty is a 2-wheel robot with 2 stable
states. Rolling behavior is surprising and
interesting to control.
An RGB strip brings animation and offer
plenty of programming possibilities.
It can be IR controlled, and the difficulty is to
make stable normal or upside down figures.
A simple scheme is proposed, but IR handles
with joystick exist.
Using the Gy521 accelerometer and gyro
removes the frustration of developing pole
balancing robots: Witty will never fall and you
can play lots of new illuminated tricks.

The card is indeed an Arduino AVR328 compatible board with an external serial to USB module.

AVR328 pins

Pin Port Pin Port

0

1

2

3

4

5

6

7

8

9
10

PD0

PD1

PD2

PD3

PD4

PD5

PD6

PD7

PB0

PB1

PB2

Rx

Tx

IRmodule

RecG

AvG

AvD
RecD
Apa Da
Apa Ck

11

12

13

14

15

16

17

18

19

PB3

PB4

PB5

PC0

PC1

PC2

PC3

PC4

PC5

 Pous low

 Led high
 Ana pin4 option
 Ana pin3 option

 I2C SCL pin3 1306

 I2C SDA pin4 1306

Software for pure Arduino fans
The table above gives the pins for the signals you wish to use.
A Led is wired on pin 15/A1, active high
A button is wired on pin 14/A0, active low. It needs a programmed pull-up resistor.
Motor are wired on pins 4,5,6,7. Use analogWrite on pins 5 and 6 and clear pins 4 and 7.
Bidirectionnal PWM can be used as explained on
https://playground.boxtec.ch/doku.php/motor/bidirectional_motorcontrol_arduino

or (same file) https://www.didel.com/robots/MotorControl.pdf
You know about PFM advantages? https://www.didel.com/PFMversusPWMforRobots.pdf

APA102 RGB strip of 8 is wired on pin 9 (ck) and pin 8 (data). Apa102 is compatible with
SK9822, which is indeed the chip used on the Witty.
There are many Apa102 libs. Use e.g. the Pololu lib https://github.com/pololu/apa102-arduino

Gy521 (MMU 8050) is wired on usual I2C pins: pin18/A4 SDA pin19/A5 SCK.
The Gy521 use the Wire lib and is well documented. Find a test program on the web, e.g.
https://playground.arduino.cc/Main/MPU-6050/

Enjoy developing your own software. One function at a time is rewarding.
If you program the same as the Demo2.ino you should end-up with 20k of code.
We explain now our approach, the Demo2 is 4k bytes and we guess rather easy to read. Do not
be afraid with the many .h files, it is a split of the many pages such a program requires.

Didel Witty software
All .pdf links easy to click on www.didel.com/Witty.html

Didel software is based on optimized simple C included files you can load as an Arduino lib, see
https://git.boxtec.ch/didel/Witty
The include files are on the Arduino lib space, but since our lib are easy to be tailored to you
needs, it may be good to have them attached to the main program. See
www.didel.com/IncludeFiles.pdf if you are not familiar.
You played with the Demo program. It grows from 2k to 4k just by adding non interesting fancy
and decorative features. If you want to understand the libs we have optimized for you, play first
with the simple test programs you find on the lib.

If you want to have all these programs accessible from Arduino lib, follows the usual procedure:

Load Arduino and click on Sketch – Include a lib – Add a zip file
Add the WittyLib.zip file. Quit Arduino and reload Arduino (it needs to rebuild links).
Now under File – Examples go down to the list, click on WittyLib and you see test programs.

Modify the test programs while reading the documentation on the ".h" files.

Witty simple tests all files from WittyTestLibs.zip

Stencil.ino Change name and ready to select the include files you need.

 You have to include them from the same directory

TestWitty.ino Test Button, Led Cligno and CliErr. Use Witty.h
When Led is on, depress button to make it last for 2 more seconds. If not, blinks and CliErr fuction, to be
used when the program goes to a wrong or expected place (debug help).

TestGetPush.ino Use GetPush() to control the motors motors
 1 push blink
 2 pushes move motors
 3 pushes test tv remote, quit if push
 >3 Cli error: bursts with the number of pushes

TestTelec.ino Blink number of pulses. Use Telec.h
 Push n times and check. Modify DelSil and DelCnt

TestPfm.ino Minimum blocking Pfm test. Use Pfm.h

DoPfm must be called every 2ms. Try 1ms, 20ms.

TestInter2Pfm.ino Speed change Use Pfm.h and Inter2.h

DoPfm is called by interrupt every 2ms

TestInter2.ino Blink by interrupt Use Inter2.h

Function DoCligno(); is called every 1ms. Its parameters are global, modified by the main
program.

TestApa.ino Test Apa102

See where to change the Rainbow? – not trivial- Test other functions .

TestGy521.ino Display gyro values

Ready to do the interesting things?

Didel Witty libs functions, links and name of test programs

Witty.h Defines pins and basic actions (e.g on/off motors). It includes the Arduino delay();

replacement we do not use for portability to other C machines. Using delay() add 150 bytes to the
program.

Witty.h #include "Witty.h" SetupWitty(); TestWitty.ino

AvG; RecG; StopG;
AvD; RecD; StopD;
LedOn; LedOff; LedToggle;
PushOn Boolean value
IrmOn Boolean value
DelMs(v16); Max 65s
Delus(v16); Max 65ms
Cligno(n8,p16); n pulses of period p

CliErr(n8,p16,s16);

AvG=Avance Gauche, etc (sorry, it is french)

StopG/D block the motor but small difference with free running

These are macros. No action if you write AvG();

if (PushOn) { do…}
if (! IrmOn) { wait for IR signal }
replace delay(); you should not use
replace delayMicroseconds(); you should not use
Blink n times, period p - do not use Cli();
Blink a sequence till reset. Use when program should not go there.

Note: Start, Stop are reserved for I2C, do not use.

Test these functions with the next TestGetPush program.

GetPush.h

GetPush.h #include "GetPush.h" no Setup TestGetPush.ino

nPush = GetPush(); Blocking. Blink fast while waiting for pushes. Echo number of pushes

GetPush save time when developing an application. Many simple tests are required to
understand software primitives and master hardware reactions.

Save most of your tests under a new name, you will be happy to retest them later

Apa102.h Controls the RGB strip, see https://www.didel.com/WittyApaSk.pdf for details

Apa102.h #include "Apa102.h" SetupApa102();
#define Npix 8 // nombre de LEDs

#define Brt 2 // max 31 brigtness

TestApa102.ino

ApaClear();

ApaRGB(r,g,b); //values 0 to 255

ApaLogRGB(r,g,b); //values 0 to 16

ApaLogRed(v); same for Green
Blue, Yellow, Pink, Cyan, White.

ApaRainbow(); one solution for 8 RGBleds

Clear the strip
Same color on all leds
Same color on all leds, log
progression
One parameter for 7 simple colors.

Low level functions allow to set individual leds to any color. Tables can be defined and specific
functions written, like the binary counter of Demo Test 5.

Telec.h Is a simple "Morse" control compatible with any TV remote
 see https://www.didel.com/TelecommandeIrSimple.pdf

Telec.h #include "Telec.h" no setup TestTelec.ino
nPulse = CompteIR(); Blocking. Green Led echo the pulses received.
DelSil and DelCnt can be reduced for faster reaction.

Proportional control needs a handle with pots, as proposed on
https://www.didel.com/Ir/RolloverCommandeArduino.pdf
SendEmir.h and GetEmir.h libs are available (3 channels). Hermes board under development.

Inter2.h Interrupt required for PFM and TerGet

 See https://www.didel.com/C/Interruptions.pdf new text being prepared
Inter2.h #include "Inter2.h" SetupInter2(); TestInter2.ino
none The Setup starts the blink activity.
Single interrupt is easy to master. One works with interrupt flags and not with interrupt service
routines (ISR), see for instance test TerGet.ino

The processor is interrupted every 60 microseconds, For most task this is too frequent and
predividers call tasks at the appropriate period of time.

Pfm.h Pfm blocking test
See https://www.didel.com/prof/PwmPfm.pdf https://www.didel.com/PFMversusPWMforRobots.pdf
Pfm.h #include "Pfm.h" SetupPfm(); TestPfm.ino

DoPfm (); //no parameter, global variables

PfmL,PfmR

Main program or an interrupt routine modify PfmL and/or PfmR. The new value is taken into
account at the next interrupt.

Pfm.h and Inter2.h Speed control
See https://www.didel.com/PFMversusPWMforRobots.pdf
 https://www.didel.com/diduino/PfmPratique.pdf
Pfm.h #include "Pfm.h" SetupPfm(); TestInter2Pfm.ino

DoPfm (); //no parameter, global variables

PfmL,PfmR

Main program or an interrupt routine modify PfmL and/or PfmR. The new value is taken into
account at the next interrupt.

I2cTwi.h Transfer with the Gy521
 see www.didel.com/LibXI2C.pdf
I2cTwi.h #include "I2Ctwi.h" SetupI2Ctwi(); TestGy521.ino
aadd = 7 bit address

writeByte(data);

data=ReadByte();

writeByteAt(reg,data);

data=ReadByteAt(reg);

writeWordAt(reg,data);

data=ReadWordAt(reg);

The option here is there is only one I2C channel defined in main PP.
This avoid to repeat the I2C address on all transactions.

I2C block if no I2C device is attached. See www.didel.com/CheckI2C.pdf

Gy521.h Gyro/Accelero sensor
Gy521.h setup initialize the Gy521. It is not yet clear if averaging functions should be added
there or as different libs.

TerSer.h replaces Serial.print() function. See https://www.didel.com/TerSer.pdf and Terser

examples on https://git.boxtec.ch/didel/TerSer

Other set of useful functions are being prepared to facilitate programming Glis.h (moving
averages) , Time.h (replace millis(); with directly usable time/timout counters).
Many other libs are specific to robots (Enco.h) and sensors (DistIr.h, Uson.h, DHT.h, etc).

More to help debugging
Playing with the speed of the motors is easy. Using the gyro needs a deep understanding of its
behavior, that is observing the raw data produced by the Gy521, on the terminal, and on an
Oled as made possible by replacing Gaia by the Pythie module. In both cases, you will
appreciate the 5-line link between Witty and Gaia or Pythie.
A flexible wire can be used to link Pythie and Witty, giving enough freedom to Witty to hold it in
different positions, observe variables and adjust parameters before giving Witty its full liberty
(picture below).
The trick to use the Oled SSD1306 to display any useful information is to
use the I2C "bitbang" library I2CBb01.h together with OledPix.h for
drawing graphics and TerOled.h for displaying numbers.
Scl and Sda signals are inputs only to the Oled but may disturb the
downloading of programs, due to the I2C pull-ups on the 1306.
Pythie is documented on https://www.didel.com/Pythie.pdf
Pythie replaces Gaia and takes benefit of the two lines RxD and TxD to help debugging.

jdn 190507

