

http://www.didel.com/ info@didel.com

www.didel.com/Ploutos.pdf

Ploutos DuiPoNano

On Greek ceramics <u>Plutus</u> can be identified as the one bearing the horn of plenty

The Ploutos is pin compatible with an Arduino Nano, but it has additional on-board connectors that facilitates your applications; hence it is 4mm wider. It sports 2 motors, one Oled, I2C sensors and an IRmodule. Add a Lipo and you have a compact 3.7V/5V autonomous system including the lipo charger. Charge occurs when USB is connected

Connectors on DuiPoNano					
Pin	Port		Connector		
4	PD4	Mot 1Av	M1		
5	PD5	Mot1Rec	M1		
6	PD6	Mot2Av	M2		
7	PD7	Mot2Rec	M2		
13	PB5	Led/Pous	Tell		
14/A0	PC0	IRM	-		
18/A4	PC4	SDA	I2C + SSD		
19/A5	PC5	SCL	I2C + SSD		

Differences with Arduino Nano is 3V3 is not provided. D13 is shared with push button and LED, D4-D7are connected to passive . D7motor driver inputs

Definition file

Arduino	С	
#define LP 12 // LED/Push pin	#define bLP 4 // LED/Push bit on PORTB	
<pre>#define PushMode pinMode (LP,INPUT) #define LEDMode pinMode (LP,OUTPUT) #define PushOn (digitalRead(LP)) #define LEDOn digitalWrite (LP,1) #define LEDOff digitalWrite (LP,0)</pre>	<pre>#define PushMode clearBit (DDRB,bLP) #define LEDMode setBit (DDRB,bLP) #define PushOn (PORTB & (1< bLP)) #define LEDOn setBit (PORTB,bLP) #define LEDOff clearBit(PORTB,bLP) #define Forw PORTD&=0b01100000; PORTD =0b01100000</pre>	
<pre>#define Forw digitalWrite (MotlAv,1);/</pre>	<pre>#define Back PORTD&=0b10010000; PORTD =0b10010000 #define TurnR PORTD&=0b01010000; PORTD =0b01010000</pre>	
#define Av1 4 continue	<pre>#define TurnL PORTD&=0b10100000; PORTD =0b10100000 #define Stop PORTD &= 0b00000000 void SetupMot() { DDRD = 0xF0; }</pre>	
pinMode (Mot1Av 4,OUT); continue	<pre>void SetupDuiMot () { DDRB = 0x00; // according to connector DDRC = 0x00; DDRD = 0xF0; }</pre>	

Interesting features

Two LEDs for voltage indication

One of the two LED **is Off** at 3V and **On** at 3.7V. It is not precise, but in a glance, you know if you need to recharge.

Pushbutton on pin 13

Motors drivers

As most motor shields, they use pins 4,5,6,7. The drivers are CS7721 well suited for 200mA small motors and "solar" motors (10-30 Ohm coils). Doing bidirectional PWM on these pins is explained on https://playground.boxtec.ch/doku.php/motor/bidirectional_motorcontrol_arduino Remember PFM allows for a better speed control: https://www.didel.com/PFMversusPWMforRobots.pdf

The Oled SSD 1306, 32x128 or 64x128 are so cheap and so easy to use, why do without it ? See our doc on https://www.didel.com/Oled.html

Wire lib can be used to add sensors.

Lipo connection

The connection point are close to the switch. Square pads are always Gnd. Charge current is set at ~30mA, automatic cut-off when The Lipo voltage exceed 4.2V followed by trickle. One of the two LED **is Off** at 3V and **On** at 3.7V. It is not precise, but at a glance, you know if you need to recharge.

Schematic

The Avr328 is programmed with a Duemila Arduno loader. A SIL 1.27mm pitch ISP connector allows to reprogram according your needs, see <u>https://www.didel.com/AdaProg.pdf</u>

jdn 180618/180808