

http://www.didel.com/ info@didel.com

www.didel.com/OledBbLib.pdf

Oled I2C bitbang library
Two or more oleds on the same board

First part of this document under https://www.didel.com/OledLib.pdf

I2C is a rather slow transfer protocol, easy to
program in master mode. In addition, The Oled
I2C SSD1306 accepts only write commands,
Acknowledge can be ignored.
As shown on the picture, the two analog values
read on the pot are shown in real time (min
5ms to display a dot) on the two screens
simultaneously.
You can also note that the Oleds are powered
by Arduino pins set at 0 and 5V; current on the
Oled is max 3-4mA and voltage can go doen to
2.5V.

We assume you have understood the OledPix
library. OledMap is not considered, sice it
needs 1 kbyte of memory per screen, and
AVR328 has only 2k total.

Test lines and scan lines

Remember that the 64x128 Oled must be seen as 8 lines of
vertical bytes and is well suited to display 7x5 characters. First
bytes of these line numbered 0,1,..7 have a byte address 0,
128, 256, etc.
The hardware of the circuit consider also scan lines of one pixel
high, ordinate 0..63.

Two Oled sizes

A single command, allows to
change the continuous
transfer of the local bitmap . In
the normal 64x128 mode, the
32x128 oled display one every
tho lines – difficult to read.
The 32x128 mode uses the
second half of the inside
bitmap, that is text lines
4,5,6,7, bytes 512 till 1023.
A 64x128 Oled spread these
32 lines over the height of the
screen, ignoring one every two
lines. We use it frequently and
name it DoubleH mode; it
shows more readable text and
numbers, without any software
change.

Oled commands

I2C 8-bit SSD1306 Oled address is 0x78 (7-bit address 0x3C).. The address is followed by a
command (0x00) and by control sequences. For normal mode, I2C transfer is:
 0x78 0x00 0xda 0x12

For 32x64 or double height 64x128 mode, I2C transfer is:
 0x78 0x00 0xda 0x02

If you use Adafruit library, send that info using Wire lib, eg
 Wire.beginTransmission(0x78/2); // 0x3C

 Wire.write(0x00);

 Wire.write(0xda);

 Wire.write(0x02); // double height

 Wire.endTransmission();

OledI2Cbb.h

BitBang needs Sck and Sda signals be declared on any 2 pins. We have selected hereArduino
pin 5 for SCK and pin 4 for SDA. In addition, we define pin 7 at zero volt and pin 6 at + 5V. So
we can insert the Oled on pins 7654 and power it witout additional wires.
As explained in OledLib, pinMode is too slow. A general template define the port and the pins,
as in the example below, with the Oled wired on pins 7,6,5,4 (program TestOledbb7654.ino)

#define Ddr DDRD

#define Port PORTD

#define Pin PIND

#define bCk 5 // pin 5

#define bDa 4 // pin 4

#define bGnd 7

#define bVcc 6

#define Ck1 bitClear (Ddr,bCk)

#define Ck0 bitSet (Ddr,bCk)

#define Da1 bitClear (Ddr,bDa)

#define Da0 bitSet (Ddr,bDa)

void Setupbb() { //Avec OledPix

 Ddr |= (1<<bGnd|1<<bVcc|1<<bCk|1<<bDa) ;

 Port |= (1<<bVcc) ;

 Port &= ~(1<<bGnd|1<<bCk|1<<bDa) ;

}

Notice that only the first 7 lines have to be modified if the 4 pins are on the same ports
Program TestOledbb7654.ino takes 1816 bytes and 47 variables.

Add another Oled

The second Oled will be defined with a similar set of definitions and the setup will have to
initialize both.
Now, we do not want to duplicate the OledPix library.
The OledPix lib uses 3 I2C functions to communicate with the Oled: Start, Stop, Write.
We need to have these functions including a switch to select the transfer toward Oled #1 or #2.
Let uns name the variable SelOled, with values 0 and 1 for two Oleds.
The Bb primitives, tested separately for the 2 Oleds, are Start0;, Start1(); etc

The Oled Start(); function or macro just need to include an if statement.
void Start(){
 if(SelOled==0) {Start0();}
 else { Start1();}
}

Etc.. Write carefully and it will work..
Our example in the zip www.didel.com/OledBbLib.zip uses macros for Start0();, etc., which
does not seems to be worth, but we did not compare precisely code size and execution time.

jdn 180421

