ol
)

- - _
: /7_/ /7 F /5’_,] http://www.didel.com/  info@didel.com

www.didel.com/Averaging.pdf

[ L
r

=

Version en francais www.didel.com/Moyennes.pdf

Simple and sliding average

This documentation is for beginners. The goal is to make clear the usefulness and ease of use
of the sliding/moving average. Glis.h "library" is easy to understand and includes the functions
to handle two streams of 16 bits values. It can be modified easily for 8 bit data and is a good
preparation to program more complex averaging solutions.

Simple averaging

The measurement of a sensor is always noisy. A simple solution is to group several measures
and calculate the average. The duration between the results is increased.

For example, we receive 8-bit values from a sensor and accumulate them. Every 4 values, the
average is transmitted.

The blocking function that average 4 equidistant measurements is simple. The measure is made
every pp millisecond and the measures are summed and divided by for (and not divided by 4
and summed). This mean the total may need more bits than the measures.

uintl6_t Average (uintl6_t pp, uintl6_t mes) {
uintl6_t total;

for (uint8_t i=0; i<4; i++) { // four <l4-bits measures
total += mes;
delay (pp) ;

}
return (total/4);

}
The total must not exceed 16 bits. If you add 10-bit words (analogRead() results), you can
average up to 64 values.
A division by 4 is clearly faster than a division by 3 or 5, because it is just a shift. We will always
average on 2, 4, 8,16 values to save memory and calculated time.

The test program depends on what you read. If a potentiometer is connected to AO, the values
can be displayed on the serial terminal.

// TestSimpleAverage.ino
void setup () {
}
int Average (int pp,int mes) { // 4 measures
int total;
for (byte i=0; i<4; i++) {
total += mes;
delay (pp) i
}
return (total/4);
}
byte light;
void loop () {
light = Average (10, analogRead(A0));
//... 1if (light > MaxLight) {...}
// Update every 4x10 ms
}

1. Average values of a table

We have accumulated the values in a table and we need the average. We also need to round
the result, that is if the rest of the division is higher than 0.5, add one to the integer part.
void setup() {
Serial.begin(9600);

}
byte table[] = {23,43,66,51,11,24,92,7,33,15};



lgTable = sizeof (table);
uintl6_t total = 0;
uintl6é_t avera
void loop () {
for (int i=0; i<lgTable; i++) {
total += table [i] ;
}
avera = total/lgTable ;

if (total%lgTable) >= 1lgTable/2) { moyenne++}
Serial.print (avera);
while (1) {}

}

We need the length of the tables in several instructions:
- in the definitions of the table [] (the hook can remain empty, the C can count
the declared elements),
- in the number of iterations in the for loop,
- in the division.
- in the calculation of the rounding
Thanks to the sizeof() operator, the compiler transfers the length of the table into a variable,
and the program does not depends on the initial length of the table. .

This example also makes it possible to mention a functionality of the C called type conversion
(casting type): In the total statement += table [i]; an 8-bit word is added to a 16-bit word. The
compiler must convert the 8-bit word table [i] into a 16-bit word so that it can be added to total.
In this case, it does it alone, but sometimes, especially with floating numbers, it must be said

that there is a change of type. In our case, some compilers may require to write
total += (int) table [i];

3 Non-blocking average

The normal case is that the function that reads the sensor gives an averaged value. The
function is called by synchronous interrupt to read the sensor, but the value of the result of the
measurement is updated only every 4 interrupts.

// TestAverageByInterrupt.ino
volatile int MoyCaptAQO; // Global var
int total; byte i=0;
void GetMoyCaptAO () { // 4 measures
if (i++ < 4) {total += analogRead(A0)}
else {i=0; MoyCaptA0 = total/4;}
}
void setup () {
ISR (TIMER2_OVF_vect) ({
TCNT2 = 141; // 58 us (256-141=58x2)
GetMoyCaptAO () ;
}
}

void loop () {

//... 1f (MoyCaptAO > MaxLight)

}
In summary, every 60 microseconds (or another period), we read the sensor, and every 240
microseconds, the MoyCaptA0 value is changed. But Maxlight will be updated according to the

main loop duration.

4 Moving average

The sliding or moving average (running average) is
much more interesting. We average the last 4 or 8 bars.
The smoothing is improved, as shown in the curve
opposite. The filtered signal naturally has a delay, less
annoying than the unfiltered sudden changes or the
S’[aiI’S Of a Simple avel’age- http:/iwww lightsaga.com/blog/




Obviously, at the first measurement, the average can not be calculated on previous data. The
setup must fill the table with a first set of measurement of the sensor. If you initialize the table
with zeros, which the compiler does by default, you have to wait 4 measures before the average
is usable. What must be done is to initialize the table with the first value read.

4.1 Algorithm

The algorithm save the data on a taGlis[Lglis]; array;the variable total totalize the
contents of the table. For each new measurement, one replace the oldest measurement in the
table and correct the total. The ptTaglis pointer is a circular pointer. The total is divided by
Lglis to get the average value to be returned.

byte mesure; // sensor value
#define Lglis 8
byte taGlis[ptTaGlis];
byte ptTaGlis; int total;
void SetupGlis (byte dd) {
for (byte i=0; i<Lglis; i++) {
taGlis[i]= dd;
total += dd;
}

}
byte Glis (byte dd) { // rend la moyenne (8 bits) aprés nouvelle donnée dd

total -= taGlis[ptTaGlis]; // on soustrait la plus ancienne valeur
total += dd; // on ajoute la nouvelle
taGlis[ptTaGlis] = dd; // table a jour

if (++ptTaGlis==Lglis) {ptTaGlis=0;} // incrémentation circulaire
return (toTable/Lglis);
}

IniGlis (firstval); IS the function that just fill the table with the first valuer read.

4.2 Test with the serial terminal
This test program helps to understand the algorithm by displaying the contents of the table on
the terminal. 0 to 9 digits are entered in the top line and terminated by a CR.

//TestMoyGlis.ino avec terminal série
//Taper un chiffre de 0 - 7 dans la ligne du haut suivi d'un Enter
#define Lglis 8 // debut du fichier MoyGlis.h
byte taGlis[Lglis];
byte ptTaGlis; int toTable;
void SetupGlis () {
for (byte i1=0; i<Lglis; i++) { taGlis[1i]1=0; }
toTable=0;
}
byte Glis (byte dd) {

toTable —-= taGlis[ptTaGlis];
toTable += dd;
taGlis[ptTaGlis] = dd;

if (++ptTaGlis==Lglis) {ptTaGlis=0;}
return (toTable/Lglis);
}
void setup(void) {
Serial.begin(9600) ;
SetupGlis();
}

// Le terminal rend des car Ascii.

byte moy;
void loop () {
if (Serial.available() > 0) {
byte car = (Serial.read ())&0x07; //0-17
moy = Glis (car);
Serial.print (car);Serial.print (" ");
Serial.print (moy);Serial.print (" ");
Serial.print (ptTaGlis);Serial.print (" tot ");

Serial.println (toTable,HEX);
}

}
Modify the program to type 8-bit number

4.3 Glis.h library

The file Glis.h is for 16 bits variables.

The number of measurements is declared at the beginning of G1is.h:
moyl6=Glisl6(valle); make the average.
Glisl6 (first16) ; initialize the table at setup.



4.4 Example with a potentiometer

Glis16 are tested with a pot on A0, with display on
Oled (see www.didel.com/Oled.pdf). By acting on the
delay, we see the average catch up value read. The
program, like the other programs in this
documentation, can be loaded from
www.didel.com/Moyennes.zip.

//TestOledPotGlis 170509 Lit un pot et affiche la moyenne
//\image:0ledPot . bmp
typedef uint8_t byte;
#include "MoyGlis.h"
void setup () {

SetupOledPix () ;

SetupMoyGlisl6 () ;

// pas besoin de setup pour le pot
}
int moy, pot; // variables globales
void loop () {

pot = analogRead (AQ);

moy = Glislé (pot);

delay (100);
}

With a delay of 0.1s and a depth of 8, we see that the abrupt variations of the potentiometer are
taken into account with a delay of 0.5s

5 Timer interrupt

The sensor (here an analog signal on A0) is read regularly by a timer interrupt. The rolling
average is calculated each time and the global variable moyAO is updated. The main program
uses this variable, without knowing how it was made.

The principle of synchronous programming as "LibX" (www.didel.com/LibX.pdf) is easy to
understand:

Working with interrupts is like having an extra processor with its setup and loop that decides
which tasks to execute at each interrupt. The included file "Inter2.h" contains the Setuplinter2();
function. ISR (TIMER2_OVF vect) {} lists the tasks to be executed. These tasks must all run in
less than 10 microseconds, but are called every 60 microseconds to get a good "real-time"
response.

Our example reads a potentiometer. Arduino installs it by default, there is no explicit setup. This
potentiometer is read by interruption, and averaged in parallel. The file InterGetA0.h is therefore

the following:
//InterGetA0.h
void SetupInter(){ // initialise the timer

TCCR2A = 0; //default

TCCR2B = 0b00000010; // clk/8
TIMSK2 = 0b00000001; // TOIE2
sei();

}
// déclarer les variables locales "volatile"
ISR (TIMER2_OVF_vect) {
TCNT2 = 141; // 58 us (256-141=58x%2)
GetMoyAO () ;
}

The inserted file for one variable is

// Glis.h

#define Lglis 8

uintlé6_t taGlis[Lglis];

uintl6é_t ptTaGlis;

uint32_t total;

void SetupGlis (dd) {
for (uint8_t i=0;i<Lglis;i++) {taGlis[i]=dd;}

}

intlé6_t Glis(intle_t dd) {
total -= taGlis[ptTaGlis]; // on soustait la plus ancienne valeur
total += dd; //total a jour



taGlis[ptTaGlis] = dd; // table a jour
if (++ptTaGlis==Lglis) {ptTaGlis=0;}
return (total/Lglis);

}

void SetupGlis() {
for (uint8_t 1=0; i<Lglis; i++) {taGlisle[i]=0;}
toTa32=0;

}

int Glis(int dd) {

toTa32 —-= taGlisl6[ptTaGlis]; // on soustait la plus ancienne valeur
toTa32 += dd; //total a jour
taGlisl6 [ptTaGlis] = dd; // table a jour

if (++ptTaGlis==Lglis) {ptTaGlis=0;}
return (toTa32/Lglis);
}

By having prepared and understood these libraries, the program is very simple. The problem
we sometimes have when calling included files is to respect the order the compiler needs. A

function or variable must be defined before being used. Global variables are declared at top.

/[TestMoyenneGlissantelnter.ino

uint_16 MoyAO; //Variables globales
#include "Inter2.h

#include "Glis.h"

#include "OledPix.h"

void setup() {
SetupMoyGlis () ;
SetupInter();
// A0 ne doit pas étre initialisé

}

uint8_t x,yl,y2; // on veut le graphique de la valeur et sa moyenne
void loop () {

uintl6_t val=GetMoyl6 (analogRead (A0)); <————= ko

delay (100);
}

Note that if the sliding average of an ultrasonic sensor is to be used, we can not use the Arduino
Pulsein () function which is blocking. The GetUson () function of the X library must be used, and
is easily supplemented by a sliding average that filters reading anomalies (see
www.didel.com/OledUson.pdf).

Application for the Gy521 accelerometer and sensor.
See www.didel.com/WittyGyro.pdf

jdn 170527/190512



