

http://www.didel.com/ info@didel.com

www.didel.com/xbot/Xplus.pdf

Xplus – an efficient mobile robot platform controlled by I2C

This document describes the software control of the Xplus.
Refer to www.didel.com/XplusConnect.pdf for the wiring options with Arduino and
Raspberry.
Sample pictures:

Xplus is an I2C slave controlled by 14 commands. Transfers are compatible with
SMbus/I2C. Use Wire lib on Arduino, Python lib on Raspberry.
Depending on the command, 8 or 16bit transfers are executed, read or write. Block
transfers are possible on Python. I2C 7-bit address is 0x20. It can be changed, but not so
easily for pedagogical reasons.
The function for a generic 16-bit transfer with Wire lib is
 void Xwrite16 (int8_t cmd, int16_t data16) {

 Wire.beginTransmission(AdX;

 Wire.write(cmd);

 Wire.write(data16>>8);

 Wire.write(data16&0x00FF);

 Wire.endTransmission();

 }
As example, for setting the motors speed, one need to send the 2 bytes, speedL and
speedR, in this order, preceeded by command 3.
 Xwrite16 (3,(speedL<<8)+speedR); will do the job.

We have defined easy to remember functions within the Xplus.h "library".
 WriteSpeed (spedL,speedR);
You can redefine our names to be closer from your programmong

habits (modify Xplus.h).

Programming model
This is the survey of all the commands, detailed later.

Command Read Write Function
0 1byte Id=0xD0 id = ReadId ();

1 1byte Status
bit 0 bWhiskL
bit 1 bWhiskR

bit 6 bSpeedOkL
bit 7 bSpeedOkR

stat = ReadStatus ();

2 2bytes PfmLR WritePfm (pfmL,pfmR);

3 2bytes SpeedLR WriteSpeed (spedL,speedR);

4 2bytes PosL posL = ReadPosL ();

5 2bytes PosR posR = ReadPosR ();

6 4bytes PosBlk
7 4bytes Tell WriteTell (v16);

8 1byte ModeSens
bit 0 Ana01
bit 1 Ana23

WriteModeSens (mode);

bit 2 Uson
 etc

9 2bytes A0 A1 a0a1 = ReadA0A1 ();

10 2bytes A2 A3 a0a1 = ReadA0A1 ();

11 1byte Uson dist = ReadDistUson ();

12 1byte DistIr dist = ReadDistIr ();

cmd #0 - Identifier
The identifier is usually read with direct access (address read, data) in the initialization process of a
complex system. It can also be read by the command 0.
Arduino id = ReadId();

Python id = read_byte (AdX)
 (Only for Identifier)

cmd #1 - Status
This order gives the state of the whiskers. If left whisker is depressed, bit 1 of status variable read
is 1. If right whiskers, bit 0 is on. If both, one read 0b11 = 3.

Arduino whisk = ReadStatus();

Python whisk = read_byte_data (AdX,1)

Bits 6 and 7 are used in conjunction with the speed control (see cmd #3).
Exemple Arduino whisk = GetStatus();

 if (whisk &(1<<bWhiskL) {
 ... avoid left obstacle
 }

cmd #2 – Pfm
Command 2 write the two byte that define the speed of the motors:
 pfmL pfmR, value –128 à +127

Arduino WritePfm (pfmL,pfmR); //-128 .. +127

Python write_word_data (AdX,2,pfmLR)

One need to wait 60 us before sending a new cmd #2 or #3

Exemple Arduino Speed is increased up to the maximum, and then a sharp stop

for (byte i=0;i<128,i++) {
 WritePfm (i,i);
}

WritePfm (0,0); // motor stop
for(;;); // program stop

cmd #3 - Speed
Command 3 uses a logical speed, only 20 discrete values

Arduino WriteSpeed (speedL,speedR); // -20 ..+20

Python write_word_data (AdX,3,speedLR)

One need to wait 60 us before sending a new cmd #2 or #3

Speed has 20 values that defines PFM values according an
exponential correspondance, as shown on the drawing.

This is the table
 volatile int8_t taSpeed[]= { \

 -127,-113,-99,-85,-72,-61,-51,-42,-35,-29, \

 -24,-20,-17,-14,-11, -9,-7,-5,-3,-1, \

 0, 1, 3, 5, 7, 9,11,14,17,20,24, \

 29,35,42,51,61,72,85,99,113,127}; }

Speed adds a nice feature to your robot: constant acceleration. There are gradual transitions
from one speed to another (2 seconds to switch from +20 to -20).

The following program demonstrates the progressive variation of speed.

void loop () {

 spd = 20;

 WriteSpeed (spd,spd);

 delay (1000);

 spd = -20;

 WriteSpeed (spd,spd);

 delay (1000);

} // end loop

Test to be done:replace SetSpeed (spd) ; by SetPfm (pfd) ; pfd = 127; (same max speed) and see
the interest of constant acceleration mode.

cmd #4 - PosL cmd #5 - PosR Encoder position
The encoders (48 pulses per turn) mesure distances multiple of 2mm. The up-down counters posL
posR are 16 bits signed variables transferred by the commands of the same name.. Max distance
is 60 metres. One can write the position encoders any time.

Arduino posL = ReadPosL();

WritePosL (newPosL);

posR = ReadPosR();

WritePosR (newPosR);

Python read_word_data (AdX,4,newposL)

write_word_data (AdX,4,newposL)

read_word_data (AdX,5,newposR)

write_word_data (AdX,5,newposR)

Arduino example: One need to do move 100mm, that is 50 steps. Counters are cleared, motors
are started. One test the distance in a loop and stops the motors when distance is reached.

#define Dist 100/2

WritePosL (0);

WritePosR(0);

#define Speed 20

WriteSpeed (Speed,Speed);

while (1) {

 if (ReadEncoL() > Dist) {WriteSpeed (0,Speed);}

 if (ReadEncoR() > Dist) {WriteSpeed (Speed,0);}

}

Comment: We hope the 2 motors of your robot have a difference in their characteristics: the movement will
not be done in a straight line. The way the program is written, it is clear that one motor will stop before the
other, giving a bad final angle to the robot!. Do improve by testing only one distance to and stop both motors,
or add the distances.

Using the encoder to control the speed, hence the direction, is probably not possible due to the low
resolution of the encoder. And it is not an important objective. Do not hope for a robot that move
precisely. Close you eyes and move in a straight line, counting your steps. Did you reached your
target?. Robots also need the information of environment sensors to behave correctly.

cmd #6 - Block read of PosL PosR (4 bytes) or block write
Read a block is easy with Python. The command asks the 4 bytes that correspond to the two

positions. (not tested). That command can be used with the Wire library, if one dummy read
cycle (block length of 4) is inserted before reading the 4 bytes.

Arduino One can define a read or write of 5 bytes (length #4 received or send before
the 4 significant bytes)

Python write_block_data (AdX,6,newposLR)

posLR = read_block_data (AdX,6)

cmd #7 - Tell
The optional DiTell display on its special connector is usefull to show variables, sensors, program
state. It is an efficient aid to debugging,

Arduino WriteTell (v16);

Python write_word_data (AdX,7,v16)

Master can also get a DiTell display
You will notice on some sample programs the
Tell(v16); function that display a number on the
master board.
WriteTell (v16); calls for an I2C transfer with
command #7.
Tell (V16); is a blocking function that transfer the
data on pin 13 of any Arduino board (see
http://www.didel.com/diduino/DiTell.pdf)

The next commands control the Xbot sensors plugged on the front connector. The ModeSens
variable must be set according to what has been plugged in.

cmd #8 - ModeSens Selection of the Xsens sensor on front connector
Arduino pins 14 à 17 (A0 à A3) are available and can be used for any sensor with
analogue inputs. Xbot sensors Uson, DistIr, Servos are supported also with several
combinations of functions.

Arduino WriteModeSens(v8);

Python write_byte_data (AdX,8,v8)

ModeSens

0 Default, all inputs
1 SelAna01
2 SelAna23

10 SelOut, all outputs

3 SelUson
4 SelUsonServos na
5 SelUsonAna23

Na not applicable yet

6 SelDistIr
7 SelDistIrUson
8 SelDistIrServo na
9 SelDistIrAna23

Mode 0 does not provide access to PortC<0..3>. These modes may be redefined.

cmd #9 et #10 - An0-An1 An2-An3
The pins of the front connector are
analog inputs by default, and their 8-
bit values are made available with
cmd #9 et #10.
Xsensors ‘’Suivi’’, ‘’Piste’’, ‘’PSD’’
use analogue inputs and do not have
special command.
Note the 2 power pins on the front
connector. It makes it easy to
connect a protentiometer or any
smart sensor you dream of.

Arduino v16 = GetAna01 ();config: WriteModeSens (SelAna01);

v16 = GetAna23 ();config: WriteModeSens (SelAna23);

Python v16 = read_word_data (AdX,9)

v16 = read_word_data (AdX,10)

One need to wait 60 us before sending a new cmd.

cmd #11 Ultrasonic sensor SR05/SR04
Trig output must be on PortC pin 1 = A1, Echo input on A0.
Direct connection on front connector is not possible.

Arduino v8 = ReadDistUson ();
config: WriteModeSens (SelUson);

Python v16 = read_byte_data (AdX,11)

Wait 60 us before sending the next command

The distance is measured every 50ms. Unit is 1cm. If the sensor is not installed, this
distance is null.

cmd #12 DistIr sensors
The two sensors are connected on pin A0 and A1.

Arduino v16 = ReadDistIR ();
config: WriteModeSens (SelDistIr);

Python v16 = read_word_data (AdX,12)

Wait 60 us before sending the next command

cmd #12 returns left and right distances, measured every
50ms. Values are 2 (1-2 cm) to about 50 for a 10-20
distance, depending on the ambient light and the
obstacle IR albedo.

cmd #11 and #12 Ultrasonic and DistIr sensors

Arduino v8 = ReadDistUson ();

v16 = ReadDistIR ();

config: WriteModeSens (SelDistIrUson);

Python v8 = read_byte_data (AdX,11)

v16 = read_word_data (AdX,12)

Wait 60 us before sending the next command

The DistIrUson sensor accept both sensors. The
software redirect the Trig and Echo signals on pins A2
A3.

cmd #13 et #14 Servos
One or two servos can be connected on the A2 A3 pins. There are 25 discrete positions.

Arduino WriteServo1 (v8);

WriteServo2 (v8);

config: WriteModeSens (SelServo01);

Python write_byte_data (AdX,13,v8))

write_byte_data (AdX,14,v8))

Too few sensors? Yes, we are limited by the number of pins around the AVR328.
See the X+Go, same I2C commands, but 3 microcontrollers on board control the sensors,
the motors/encoders and a display.

Xplus.h Arduino/C definitions and functions
Definitions

#define AdX 0x20

#define Id 0 // commands

#define Status 1

 #define bWhiskL 0

 #define bWhiskR 1

 #define bSpeedOkL 6

 #define bSpeedOkR 7

#define Pfm 2

#define Speed 3

#define PosL 4

#define PosR 5

#define BlkPos 6

#define Tell 7

#define ModeSens 8

 #define SelAna01 1

 #define SelAna23 2

 #define SelUson 3

 #define SelUsonAna23 5

 #define SelDistIr 6

 #define SelDistIrUson 7

#define Ana01 9

#define Ana23 10

#define Uson 11

#define DistIr 12

#define Uson 13

Fonctions and examples of use

v8 = GetId();

v8 = ReadStatus();

WritePfm (pfmL,pfmR); //-128 .. +127

WriteSpeed (speedL,speedR); // -20 ..+20

v16 = ReadPosL ();

v16 = ReadPosR ();

WritePosL (v16);

WritePosR (v16);

WriteTell (v16++);

SetModeSens (SelUson);

v16 = ReadAna01();

v16 = ReadAna23();

v8 = ReadUson ();

v16 = ReadDistIr ();

Tell (v16) ; local on master, not I2C

Jdn 160608

