

http://www.didel.com/ info@didel.com

www.didel.com/digrove/DgTelli2c.pdf

DgTelli2c – a 4-characters display I2C/SMbus - 3 to 5V
hexa and decimal, plus alpha and segment mode

The DgTelli2c is a low power miniature 4-digit display
 that works from 3V (15mA) to 5.5V (30mA).
Also available now with a larger and cheaper display.
What's great is its Asci mode and a direct segment mode
that allows to do special graphic effects. A scrolling text is
easy to program: just send the next character with the
correct command.
Another great feature is the possible local conversion to
decimal. One thinks decimal while programming, but
variables are in hexa. Default mode is decimal, but
depress the button and it is converted to decimal (if
possible, max 9999 = 0x270F). Five modes are provided,
easy to select.
A Grove connector is installed, you can add a 2.54mm
strip male or female if you prefer.

The side connector is for the DiTell 1-wire debug display
and must be ignored.

Grove connector pinout:

 Gnd Vcc SDA SCL

I2C transfer
In order to update the display, a command and 2 bytes are transmitted using any I2C library.

//TestWriteI2C.ino

#include <Wire.h> // Arduino library

#define AdTell 0x20

void setup() { Wire.begin(); }

void loop() {

Wire.beginTransmission(AdTell);

 Wire.write(0x2); // command

 Wire.write(0x23);

 Wire.write(0xFC);

 Wire.endTransmission();

for (;;); //stop

}

Well, this is just to show that you can write a dirty simple program to do what all other I2C display can do
(and you do not need to load special software). The DgTellI2C can do a lot more.

Select I2C address
At power-up, the 7-bit I2C address is shown for 3 seconds.
Predefined address is 0x20. You can change it by depressing the
push button before the display changes. A limited number of
addresses are proposed, so you can go through easily and come
back to 0x20. Of course, the address is saved on Eeprom.

Commands
The DgTell has 6 commands for working with numbers or text, and there are more options in
both cases. For numbers, you can decide for hexadecimal, or for the decimal equivalent,
locally converted. For text, you can use the built-in character generator or use the segment
mode, and use any of the 128 segment combinations, plus decimal dot.

Write a number
As shown in the first page example, command 2 allows to transfer 16 bits that will be
displayed as an hexadecimal or BCD number. Hexa is a shorthand for the 16 bits, stored in
memory, displayed as 4 hexadecimal digits, 0 to F. BCD uses only 10 of these 4-bit
combinations, and shows decimal digits 0 to 9;

Command Tell = 2 writes a 16 bit value.

Now understand the local processor can convert binary to decimal. This is what does the
Serial.print (number,DEC); The binary value in memory is converted to decimal. The
difference is we can display numbers to 9999 and not 65535 if the number is 0xFFFF.
The DgTell binary to decimal routine will display - - - - if the hex value is greater than
0x230F = 9999
How to call the conversion routine? Two possibilities:

1) you look at what is displayed and you prefer to see it in decimal – depress the push
button. Depress again to come back.

2) when you write the I2C order, you know you need a decimal presentation, Command 1
will set the mode for you. The command must follow writing the number; by default you
write an hex number. You can change its presentation with command 1, named Mode.

Several decimal modes, provide the flexibility to work with one 16 bits word or two 8-bit
numbers. This can be preselected with command 1, or changed when you look at the
display, not receiving new commands.

Using the push button, you go from one picture to the next. The programmed mode will not
take care of what you may have selected on the push button.
Command Mode = 1

Value Hexa = 0 for hexadecimal. 0000 - FFFF

Value Decimal =4 for decimal 0000 – 9999

The decimal dots are on to show the difference.
A binary value greater than 0x270F will be converted to 9999, and
shown as 4 dashes -. -. -. -.

Frequently, the display will be programmed to show 2 sensor values, two 8-bit numbers. It will
happen the high byte should be preferably shown in hex, and the low byte in decimal. DgTell can do
it, but how to make the difference?
Bytes in decimal are blinking. How to show a value up to 255? from 100 to 199, the left dot in on,
from 200 to 255, it is the right dot.

FC has been converted to 252, the left dot is on.

Value HighDecLowHex =8 First byte is converted to decimal

FC has been converted to 252, the left dot is on.

Value HighHexLowDec =16

0x23 has been converted to 35 (2*16+3).

Value HighDecLowDec =32

0x23 --> 35 , 0xFC --> (2)52

The push button goes through the 5 values when a number is
displayed. It is not saved on Eeprom, a next command on Mode
will modify it.

Alphanumeric and segment mode

Four commands set the DgTell in text or segment (graphic) appearance.

Command AfAB = 3 writes the first 2 positions.
Command AfCD = 4 writes the next 2 positions.

These 2 commands are compatible with SMbus and Python - write_word_data(adr,cmd,val16) .
With the Arduino Wire library, it is possible to write 4 bytes after command 3.
Python encourages the use of block transfers – write_block_data (adr,cmd,long[]) we support it
Command TxtBlock = 5 The format is select (0x20), command (5), block length (4), data (4 byts).
A last command facilitates scrolling texts. One sends one character at a time followed by a delay of
200 to 400 ms.
Command Scroll = 6 shilt left and insert code.
By default, these commands call the built-in Ascii character generator.

Segment mode

Bytes control the segments directly.
It is easy to add the weight of the
segment to get the value to be send
to the display.
For instance, 57,9,9,15 (decimal) give

Segment mode is using the same command as alphanumeric commands. The Mode must
be set after sending the text, in case of change of mode value.

Command Mode = 1

Value Ascii = 1 Not required after a write command

 Read J K L M

Value Segments = 3 Segments

ABCD in segment mode 0x41 42 43 44

You can also use the push button to switch between these two modes.

Définition file and functions for Arduino/Diduino

#define Xtell 0x20

#define Id 0

#define SegBlock 1

#define TxtBlock 2

#define AfScroll 3

#define AfHex 4

#define AfDec 5

#define AfMode 6

#define AfAB 7

#define AfCD 8

Functions

v8 = ReadId(); test 0

WriteHex (v16); test 1

WriteDec (v16); test 2

WriteTxtBloc (table[4]); test 3

WriteSegBloc (table[4]); test 4

//TestWriteAlphabet.ino

#include <Wire.h>

Command summary
Command Read Write

0 1b Id=0xC0
1 5b Bloc 4 segments
2 5b Bloc 4 Ascii ABCD
3 1b 1 Ascii Scroll
4 2b 16 bits hexa
5 2b 16 bits decimal
6 1b Mode

0 Hexa
1 Ascii
3 Segments
4 Decimal
8 HighDLowB
16 HighBLowD
32 HighDLowD

7 2b 2 car AB . . (ascii)
8 2b 2 car . . CD

 Demo program: www.didel.com/digrove/DgTelli2c.zip

The X+Go mobile robot uses the same controller with a larger display.
The only difference is the push button is not available.

See www.didel.com/diduino/XplusGo.pdf

DiTell uses the same hardware with a 1-wire communication, hex
and decimal modes only , no alphanumeric.
DiTell will help your realtime debugging on all your C projects,
specially with Tiny processors. Usefulness count, not price.
See www.didel.com/diduino/DiTell.pdf jdn 160314

jdn 160314/160716

