

http://www.didel.com/ info@didel.com

www.didel.com/digrove/DgDistIr.pdf

Digrove DgDistIr
Distance sensor till 20cm

 Plusieurs documents expliquent le principe et documentent des kits similaires:
www.didel.com/coursera/LC7.pdf www.didel.com/xbot/xDist2Ir.pdf www.pyr.ch/coursera/CaptDistIrDoc.pdf

Les programmes de la partie qui suit sont faciles à comprendre.

 The DgDistIr is an efficient device for measuring the distance of a reflecting media
up to 1m in a not well eclaired room. The circuit has several options. Let's see one at a time.
The photo reflective sensor is a LIT301/FR115, but is is possible to solder a miniature
OSG105F if the detecting application is in the 0-50mm range.
.
The DgDistIr has one output and one input. The input controls a transistor that power the IR
led. Limiting resistor is 22 Ohm, a good compromise between max distance and power
consumption. Control of the transistor is made from pin 4 through a solder drop on jumper b.
A jumper allows to power continuously the transistor and have that input free. Put the solder
drop on side c.

The phototransistor can be read by 2 different ways. The naive approach, that works in a
limited range, connect a pull-up resistor to the phototransistor. On DgDistIr a 10 kOhm
resistor is connected if you close the jumper a with a drop of solder. The middle point
voltage is read on , See www.didel.com/doc/sens/DocIr.pdf (in french) to understand the
limitation of that solution, not recommended for measuring distances, but OK for on/off
control after adjustment.

The efficient way to read the light intensity is to load a capacitor and have it discharged by
the photo-transistor. One measure the time until the signal is read as a "zero", that is a
voltage lower than ~2.3V. The advantage measuring time is one can cover several decades.

Tests
Microcontrollers lines are bidirectionnal. Let us charge the capacitor with a "1" (5V) and then
switch the line to an input.

The charging pulse of 50 microseconds is
repeated every 100 ms. Inbetween, one
measure input HIGH duration without pull-up.
 ChargeMode;

 MeasureMode;

 delay (100);

If you do not have a scope, you can copy the
signal to Led13. Blink is shorter if more light.
 ChargeMode;

 MeasureMode;

 while (CapaHigh) { Led13On; }

 Led13Off;

Test1 If you have a scope, you see this

This is a C program, not a text! But the explicit names are prepared by a set of #define.

"pure" Arduino C under Arduino or other compiler
Capa is connected to pin 14, PortC bit 0. Charge; set the direction out and active the line.

#define Capa 14

#define ChargeMode digitalWrite (Capa,1);

 pinMode (Capa, OUTPUT) – on 1 line

#define MesureMode digitalWrite (Capa,0);

 pinMode (Capa, INPUT) – on 1 line

#define bCapa 0 //PortC

#define ChargeMode bitSet (PORTC,bCapa);

 bitSet (DDRC,bCapa);

#define MesureMode bitClear (PORTC,bCapa);

 bitClear (DDRC,bCapa);

Note: #define accept a list of instructions on the same line (not here for typographic reasons). It is not
recommended to do more than 2. The last instruction has no ;

In order to decide if the capa is still charged, one read the line. Above 2.7V, it is a HIGH
#define CapaHigh digitalRead(Capa) #define CapaHigh PortC&(1<<bCapa)

We need also to control Led13 as a debugging help
#define Led13 13 // pin Arduino
#define Led13On digitalWrite (Led13,1)
#define Led13Off digitalWrite (Led13,0)
#define Led13Toggle digitalWrite (!digitalRead(Led13))

#define bLed13 5 // PortB bit 5
#define Led13On bitSet (PORTB,bLed13)
#define Led13On bitSet (PORTB,bLed13)

#define Led13Toggle PORTB^=(1<<bLed13)

There is no need to wait when the capa is
below the level. The led13 on Test2 change
after every measure. Blinking is faster if
more light:
 ChargeMode;

 MeasureMode;

 while (CapaHigh) {}

 Led13Toggle

With a 10nF capacitor, blinking may be too fast.

These programs (Test1, Test2 and followings)
are available on www.didel.com/digrove/DgDistIr.zip

Test2

Measuring distance
During the while (CapaHigh) it is easy to count and save the "distance" at the end.
Test3.ino

 ChargeMode;

 MeasureMode;

 while (cnt<100) {

 if (CapaHigh) { cnt++; }

 delayMicroseconds (100);

 }

 distance = cnt;

 Serial.println (distance);

Test3b.ino //Variant

 ChargeMode;

 MeasureMode;

 while (CapaHigh) {

 cnt++; delayMicroseconds (100);

 if (cnt>100) break;

 }

 distance = cnt;

 Serial.println (distance);

Test4.ino implement a Measure() function that update the distance variable, and is easy to

call in your application. Of course, déclarations and set-up must be adapted.
This is a blocking program, with a 100 nF capacitor, it takes 50 ms and more if light is low.
There are 2 ways to accelerate:
1) reduce the capacitor value and the delays in measuring loops or max value.
2) increase the power of the IR diode.

On can use millis() to measure the duration of the pulse.
We see later how to use interrupts.

Use of millis()
Instead of counting, it is easy to measure the discharge time
Test3c.ino

 ChargeMode;

 MeasureMode;

 now = millis();

 while (CapaHigh) { ; }

 distance = millis() – now;

 Serial.println (distance);.
It gets more complicated if you need a time-out for too long discharges in the dark.

Ambiant light
A transistor controls the IR diode. This is not only to set current only during mesures, but
also for measuring ambiant light, with no power on the IR led. If ambiant light is important,
distance measure is biased. One can subtract ambiant light to the measure, it does work in a
small range. The main interest of measuring ambiant light is to have an idea if the light
conditions correspond to what has been defined.
Modify Test2.ino and Test3.ino to alternate measure with and without IRled active. (see
Test2alt.ino and Test3Alt.ino on the zip).

Several sensors
It is easy to control several sensors in the loop of Test3 program. One counter define a
maximum duration and one counter for every sensor is stopped when the corresponding
capacitor is discharged.
 ChargeMode; // charge all

 MeasureMode; // all are inputs

 while (cnt<100) {

 if (Capa1High) { cnt1++; }

 if (Capa2High) { cnt2++; }

 if (Capa3High) { cnt3++; }

 delayMicroseconds (100);

 }

 distance1 = cnt1;

 distance2 = cnt2;

 distance3 = cnt3;

If you use plain Arduino, you have to create a function for Charge() and Measure(); #define
are not comfortable for more than 2 instructions. If all capacitors are iôn the same port, it is
easy to declare in C with appropriate logic operations.

Multitask
It is clear that interrupt (PWM, time, ...) add jitter to the measure. This will noticable only if the
count is low, and anyway precision of the measure is rather good.
If one have to do something else during the measure, one can replace the
delayMicroseconds (100) by calling a function that is calibrated to take about the same time,
doing the required tasks.
Using the Arduino micros() function, if you are familiar, is not efficient. One need anyway to
test the capacitor voltage and measuring the time add more instructions and jitter than a
counter.

Interrupt
A timer can be devoted to counting the time. Every 100 us, the timer interrupt routine test the
capa level and count or activate a flag to say the count value is the measure. Clearing the
flag start a new measure, that is the interrupt routine is a state machine with 3 states:
Charge, Measure, Wait on flag to be cleared.

100 us Timer1 Interrupt
Multi-interrupts are difficult to master. A single interrupt every 100 us can service many
tasks, as shown in www.didel.com/xbot/Interruption100us.pdf (in French, will be translated if interest is shown).

In order to service two sensors two 8-bit global
variables are updated every 40ms and give
distance values between 0 and 255.
The state machine to be called by the interrupt
every 100 us is given next.
Definitions and set-up are given below:

//DistIr.h Libraire Uson pour

interruption

#define bDistG 0 //PORTC pin14

#define bDistD 1 //PORTC pin15

#define bLedIr 2 //PORTC pin16

#define DirLedIr DDRC |= 1<< bLedIr

#define LedIrOn bitSet (PORTC,bLedIr)

#define LedIrOff bitClear (PORTC,bLedIr)

#define mCadist (1<<bDistG | 1<< bDistD)
#define ModeCha DDRC |= mCadist; PORTC |= mCadist

#define ModeMes DDRC &= ~mCadist; PORTC &= ~mCadist

#define CapaGHigh PINC & 1<<bDistG

#define CapaDHigh PINC & 1<<bDistD

void SetupDistIr () {

 DirLedIr;

 LedIrOn;

 ModeMes;

}

volatile byte cnti, cntG,cntD;

enum {Istart,Iatt,Icnt,Ifin}

eIr=Istart;

void DoDistIr () { // cycle de 17us

 cnti++;

 switch(eIr) {

 case Istart:

 ModeCha; // precharge

 cnti=0;

 eIr= Iatt;

 break;

 case Iatt:

 ModeMes;

 cntG = 0 ; cntD = 0 ;

 eIr= Icnt;

 break;

 case Icnt:

 if (CapaGHigh) cntG++ ;

 if (CapaDHigh) cntD++ ;

 if (cnti==0) eIr= Ifin;

 break;

 case Ifin:

 DistIrG = cntG;

 DistIrD = cntD;

 eIr = Istart;

 break;

 } // end switch

Using miniature sensors
It may be useful to detect distances close to 1mm. The DistIr PCB can accept the miniature
OSG-105F sensor horizontal or at the edge of the PCB.

