

http://www.didel.com/ info@didel.com

www.didel.com/diduino/DiTellb.pdf

DiTell-b – a 4-digit display using 1-wire communication
with hexa and decimal presentation

En français www.didel.com/diduino/DiTellFacile.pdf

Prefer I2C ? – see www.didel.com/digrove/DgTelli2c.pdf

This is indeed the same documentation as for the Ditell, which
has a compact disply not manufactured any more, that is
expensive and in limited supply.
The Ditell-b use a standard 4-digit display. It is slightly brighter.

The DgTellI2C is not available in –b form.

The DiTell role is to spy two 8-bit sensor values or a 16-bit
variable, showing their values in hexadecimal or decimal.
It needs only one wire, plus a 3 to 5V supply, 15 to 40mA.
A 3-pin optional connector plugs on the right top pins of the
Arduino, using pin 13, usually reserved for blinking the led.
With the DiTell connectedon that pin, you get a powerful
debugging tool and easy control display.
Use a 3-wire cable, up to 50cm long, and put the DiTell
any place if the connector on pin 13 does not suit you. Any
other pin is good , Just update the pin definition.
What's great is the possible local conversion to decimal. One
thinks decimal while programming, but variables are stored,
and transferred in hex. Local conversion to decimal is
instantly selected, depressing on a button.

If the +V is connected, DiTell
woks usually well, but it is not
so luminous, being powered
by S pin while at state HIGH.

The 1.wire transfer protocol is similar to Dallas 1 wire. The16.bit transfer is done in 3
milliseconds with a C function to be called when you need to update the displayed value. It
adds 92 bytes to your code, 132 if you wish to blink.. Compare with any other solution !

The DiTell display is also supported by the LibX library that makes displaying a value
transparent to the user, See www.didel.com/xbot/DemoTell.pdf (en français) . Doc on Github
coming.

Didel software is written in C, not using Arduino "facilities", and is easy to adapt to any robot,
to any microcontroller programmed in C.

Timing
Every bit lasts 180 us
Zero pulses are 60us low, 120 us high
One pulses are 120us low, 60 us high
Transfer time ~3 ms
Spacing between16-bits transfers must be > 1
ms (display refresh period is usually 20ms).
The state before the burst can ba saved and
restored, allowing the usual blinking on pin13.

Changing the delays allows to use e.g. a 1MHz Tiny AVR processor.

Code for AVR328 16MHz and AtTiny (qz constants according to speed)
Sketch under www.didel.com/diduino/DiTell.zip

// TestTell send 16 bits, 16 MHz processor, Arduino

#define bS1 5 // pin 13

#define S1On bitClear (PORTB,bS1)

#define S1Off bitSet (PORTB,bS1)

#define S1dirOut bitSet (DDRB,bS1)

volatile byte qz; volatile int qqz;

#define Delt (qz=95; while(qz--){}) // 60us à 16 MHz

#define Deltt (qqz=600; while(qqz--){}) // 600us à 16 MHz

void Tell (int dd) {

 byte cc=0;

 sd = PORTB; S1Off; // save , set high // optional recovery

 Deltt; // min 600 us // instructions

 // cli(); //remove jitter interrupt if required (>5us)
 while (cc++ < 16) {

 S1On;

 Delt; if (!(dd&0x8000)) { S1Off;}

 Delt; S1Off;

 Delt;

 dd <<=1;

 }

 if (!(sd & (1<<bS1))) { S1On; } // recovery instruction

// sei(); //restore interrupts
}

// Arduino 814 bytes with recovery
void setup () {

 S1dirOut;

}

void loop () { // test blink
 S1Off;

 Tell (0x5533);

 delay(1000);

 S1On;

 Tell (0x4321);

 delay(1000);

}

// AtTiny24 with AVRstudio 286 bytes (qz = 6 at 1MHz clock)
int main () { // AVR studio

 DaOut;

 for (;;) {

 Tell (0x1234);

 delMs (10);

 }

}

This optimised Tell() function needs 92 bytes of code + 40 with recovery

Hex and Decimal modes
4-digit displays are traditionally showing hexadecimal values, which can be decimal if converted
before transmission.

The DiTell do local conversion according to 5 modes, providing the frexibility to work with one 16 bits
word or two 8-bit numbers.

Mode 0 is hexadecimal.

Mode 1 is decimal 4 digits, with the limitation that if if you send
0x270F it will be converted to 9999, and a greater hex number
cannot be displayed. Dashes will be shown -. -. -. -.
The 4 dots are lighted when the number is displayed in decimal.

Mode 2 assumes you work with two 8-bit numbers, and it happens
the high byte is preferably shown in hex, and the low byte in decimal.
How to make the difference? Bytes in decimal are blinking. How are
shown values up to 255? From 100 to 199, the left dot in on, from
200 to 255, it is the right dot. On the right 2 digits, 0xFC has been
converted to 252, notice the right dot is on.

Mode 3 assumes you work also with two 8-bit numbers, and it
happen the low byte is preferably shown in hex, and the high byte in
decimal.
0x23 has been converted to 35 (2*16+3).

Mode 4 assumes you work also with two 8-bit numbers, and you
need to see both of them in decimal.

The push button goes through the 5 modes any time.
The selected mode is saved on Eeprom and restored at power up.

Leds

There are one red led on the DiTell and a bicolor led, unused. The red led blings at pouwer-
up, and then show the state of the S1 line, led on if active low. If connected on pin 13, the led
connected to pin 13 is active high, so the 2 leds are of opposite phase.
.
Wiring options
I
DiTell can be controlled by three connectors.
The side one with 3 pins is compatible with
Arduino pin. Check you have power on last
pin., or bring power on the additional + pins
The 4-pins connectors on the board have the
minus on the side, then + and the S1 signal
You can put a Grove connector and use only
the signal on pin 3. You can put a male of
female 2.54mm 3-pin connector, osolder long
wires directly.

Comments

The DiTell is the solution for many debug problems. It needs a single pin to display a 16-bit
word, or two bytes. The target microcontroller is even a small tiny AVR or PIC. On Arduino,
one pin is frequently kept for debugging, usually pin13 with its led you can blink. The DiTell
uses that pin, and it is still possible to blink. Serial transfers on that pin disturb the led for
3ms, but it is still easy to recognize slow blinks.

A display needs to be powered. Next to pin13 is a Gnd pin. Next pin is the Aref pin, very
seldomly used. On the Diduino, that pin is connected to the +5V. On Arduino boards, there
is no arm to connect that pin to the +5V available on the other side of the board.
See the pictures on the top of this document.

As mentionned earlier, the Tell(val); function must be called to update the display. This is
a blocking function that will be disturbed by an interrupt of more than 5 microsecond duration.
In this case, one should deactivate interrupts for the 3ms of the transfer.

Didel proposes also an Oled module and an
adapter to connect it on PORTB. Pin 13 of the
MsOled is shared and a 3-pin connector is
provided for the DiTell. The graphic is very
slow, but as a didactic tool, it offers the
possibility to show the evolution of a sensor.
DiTell gives the instant value, the MsOled uses
the Adafruit library and is heavy.(7000 bytes)
See http://www.didel.com/xbot/Oled.pdf

Use the DiTell on your Tiny24 and Tiny25 projects

Debugging a small processor is always delicate. The one pin DiTell. makes it easy to find its
place, and frequently that pin can be shared with another signal, e.g. a push-button or a led.
In case of a push button active low, changing the direction is enough, no delay is required
before the transfer.
Push.button active high may work if there is a >1k resistor toward the +5 or + 3.3V.

Interrupt transfers under LibX

DiTell has its best use when controlled by interrupt.
The LibX library, written in portable C (not Arduino), uses a
simple timer, available on all processors, that will interrupt the
main program every 60 microsecond and go through a serie
of tasks, that are steps of state machines. The DiTell
transfer needs 50 steps, that is last 3ms, but each step is less
than 15 instructions and takes 2 microseconds. Other tasks
are also cut in small pieces and you can really do a lot of
work before the interrupt routine takes 30 us, and use half of
the processor time. In the main program loop, asking DiTell to
display a new value needs only one instruction

Get familiar with DiTell, interrupt and all the LibX possibilities
with www.didel.com/xbot/LibXTutorial.pdf or jump immediatly on

www.didel.com/xbot/LibX.pdf

 jdn 1511110

http://www.didel.com/ info@didel.com

www.didel.com/diduino/DiTell.pdf

DiTell – a 4-digit display using 1-wire communication
with hexa and decimal presentation

Prefer I2C ? – see www.didel.com/digrove/DgTelli2c.pdf

The DiTell role is to spy two 8-bit sensor values or a 16-bit
variable, showing their values in hexadecimal or decimal.
It needs only one wire, plus a 3 to 5V supply, 15 to 40mA.
A 3-pin optional connector plugs on the right top pins of the
Arduino, using pin 13, usually reserved for blinking the led.
With the DiTell connectedon that pin, you get a powerful
debugging tool and easy control display.
Use a 3-wire cable, up to 50cm long, and put the DiTell
any place if the connector on pin 13 does not suit you. Any
other pin is good , Just update the pin definition.
What's great is the possible local conversion to decimal. One
thinks decimal while programming, but variables are stored,
and transferred in hex. Local conversion to decimal is
instantly selected, depressing on a button.

If the +V is connected, DiTell
woks usually well, but it is not
so luminous, being powered
by S pin while at state HIGH.

The 1.wire transfer protocol is similar to Dallas 1 wire. The16.bit transfer is done in 3
milliseconds with a C function to be called when you need to update the displayed value. It
adds 92 bytes to your code, 132 if you wish to blink.. Compare with any other solution !

The DiTell display is also supported by the LibX library that makes displaying a value
transparent to the user, See www.didel.com/xbot/DemoTell.pdf (en français) . Doc on Github
coming.

Didel software is written in C, not using Arduino "facilities", and is easy to adapt to any robot,
to any microcontroller programmed in C.

Timing
Every bit lasts 180 us
Zero pulses are 60us low, 120 us high
One pulses are 120us low, 60 us high
Transfer time ~3 ms
Spacing between16-bits transfers must be > 1
ms (display refresh period is usually 20ms).
The state before the burst can ba saved and
restored, allowing the usual blinking on pin13.

Changing the delays allows to use e.g. a 1MHz Tiny AVR processor.

Code for AVR328 16MHz and AtTiny (qz constants according to speed)
Sketch under www.didel.com/diduino/DiTell.zip

// TestTell send 16 bits, 16 MHz processor, Arduino

#define bS1 5 // pin 13

#define S1On bitClear (PORTB,bS1)

#define S1Off bitSet (PORTB,bS1)

#define S1dirOut bitSet (DDRB,bS1)

volatile byte qz; volatile int qqz;

#define Delt (qz=95; while(qz--){}) // 60us à 16 MHz

#define Deltt (qqz=600; while(qqz--){}) // 600us à 16 MHz

void Tell (int dd) {

 byte cc=0;

 sd = PORTB; S1Off; // save , set high // optional recovery

 Deltt; // min 600 us // instructions

 // cli(); //remove jitter interrupt if required (>5us)
 while (cc++ < 16) {

 S1On;

 Delt; if (!(dd&0x8000)) { S1Off;}

 Delt; S1Off;

 Delt;

 dd <<=1;

 }

 if (!(sd & (1<<bS1))) { S1On; } // recovery instruction

// sei(); //restore interrupts
}

// Arduino 814 bytes with recovery
void setup () {

 S1dirOut;

}

void loop () { // test blink
 S1Off;

 Tell (0x5533);

 delay(1000);

 S1On;

 Tell (0x4321);

 delay(1000);

}

// AtTiny24 with AVRstudio 286 bytes (qz = 6 at 1MHz clock)
int main () { // AVR studio

 DaOut;

 for (;;) {

 Tell (0x1234);

 delMs (10);

 }

}

This optimised Tell() function needs 92 bytes of code + 40 with recovery

Hex and Decimal modes
4-digit displays are traditionally showing hexadecimal values, which can be decimal if converted
before transmission.

The DiTell do local conversion according to 5 modes, providing the frexibility to work with one 16 bits
word or two 8-bit numbers.

Mode 0 is hexadecimal.

Mode 1 is decimal 4 digits, with the limitation that if if you send
0x270F it will be converted to 9999, and a greater hex number
cannot be displayed. Dashes will be shown -. -. -. -.
The 4 dots are lighted when the number is displayed in decimal.

Mode 2 assumes you work with two 8-bit numbers, and it happens
the high byte is preferably shown in hex, and the low byte in decimal.
How to make the difference? Bytes in decimal are blinking. How are
shown values up to 255? From 100 to 199, the left dot in on, from
200 to 255, it is the right dot. On the right 2 digits, 0xFC has been
converted to 252, notice the right dot is on.

Mode 3 assumes you work also with two 8-bit numbers, and it
happen the low byte is preferably shown in hex, and the high byte in
decimal.
0x23 has been converted to 35 (2*16+3).

Mode 4 assumes you work also with two 8-bit numbers, and you
need to see both of them in decimal.

The push button goes through the 5 modes any time.
The selected mode is saved on Eeprom and restored at power up.

Leds

There are one red led on the DiTell and a bicolor led, unused. The red led blings at pouwer-
up, and then show the state of the S1 line, led on if active low. If connected on pin 13, the led
connected to pin 13 is active high, so the 2 leds are of opposite phase.
.
Wiring options
I
DiTell can be controlled by three connectors.
The side one with 3 pins is compatible with
Arduino pin. Check you have power on last
pin., or bring power on the additional + pins
The 4-pins connectors on the board have the
minus on the side, then + and the S1 signal
You can put a Grove connector and use only
the signal on pin 3. You can put a male of
female 2.54mm 3-pin connector, osolder long
wires directly.

Comments

The DiTell is the solution for many debug problems. It needs a single pin to display a 16-bit
word, or two bytes. The target microcontroller is even a small tiny AVR or PIC. On Arduino,
one pin is frequently kept for debugging, usually pin13 with its led you can blink. The DiTell
uses that pin, and it is still possible to blink. Serial transfers on that pin disturb the led for
3ms, but it is still easy to recognize slow blinks.

A display needs to be powered. Next to pin13 is a Gnd pin. Next pin is the Aref pin, very
seldomly used. On the Diduino, that pin is connected to the +5V. On Arduino boards, there
is no arm to connect that pin to the +5V available on the other side of the board.
See the pictures on the top of this document.

As mentionned earlier, the Tell(val); function must be called to update the display. This is
a blocking function that will be disturbed by an interrupt of more than 5 microsecond duration.
In this case, one should deactivate interrupts for the 3ms of the transfer.

Didel proposes also an Oled module and an
adapter to connect it on PORTB. Pin 13 of the
MsOled is shared and a 3-pin connector is
provided for the DiTell. The graphic is very
slow, but as a didactic tool, it offers the
possibility to show the evolution of a sensor.
DiTell gives the instant value, the MsOled uses
the Adafruit library and is heavy.(7000 bytes)
See http://www.didel.com/xbot/Oled.pdf

Use the DiTell on your Tiny24 and Tiny25 projects

Debugging a small processor is always delicate. The one pin DiTell. makes it easy to find its
place, and frequently that pin can be shared with another signal, e.g. a push-button or a led.
In case of a push button active low, changing the direction is enough, no delay is required
before the transfer.
Push.button active high may work if there is a >1k resistor toward the +5 or + 3.3V.

Interrupt transfers under LibX

DiTell has its best use when controlled by interrupt.
The LibX library, written in portable C (not Arduino), uses a
simple timer, available on all processors, that will interrupt the
main program every 60 microsecond and go through a serie
of tasks, that are steps of state machines. The DiTell
transfer needs 50 steps, that is last 3ms, but each step is less
than 15 instructions and takes 2 microseconds. Other tasks
are also cut in small pieces and you can really do a lot of
work before the interrupt routine takes 30 us, and use half of
the processor time. In the main program loop, asking DiTell to
display a new value needs only one instruction

Get familiar with DiTell, interrupt and all the LibX possibilities
with www.didel.com/xbot/LibXTutorial.pdf or jump immediatly on

www.didel.com/xbot/LibX.pdf

 jdn 1511110

