

http://www.didel.com/ info@didel.com

www.didel.com/RGBstrips.pdf

RGB strips

There is now a big choice of strips of colored leds. They are
supported by libraries for Arduino, Raspberry and ESP8266.

We are interested here to understand about the functionality of chips
from different makers and how to write the required low level control
routines.

The leds of a strip are serially connected and use shift registers. As shown later, shift registers are
controlled with a clock and a data line. A third information is required to know when the data is
complete. SPI add a third line. RGB strips count the clocks or no clock for e.g. 10ms means the end
of transmission. RGB smart leds with 2 control lines accept a clock frequency up to 20 MHz and
include the early WS2801 and by 2017 the one-chip APA102C, APA102-2020 and Sk9822 listed in
appendix.
Clock and data can be encoded. The saving of one line makes the decoding tricky and interrupt
sensitive. Frequency is fixed, 800 or 580 kHz. Existing chips are the WS2812b, APA104, SK6812.
More listed in appendix. The problem of all these chinese chips is the specifications are not clear.
Translation and extracts by distributors make some important data to desappear.
Strips of different density are "supported" by numerous web pages which does not explain what
follows.

Refresh about serial transfers
Shift registers are used to convert a stream of bits synchronized by a clock into parallel data.
A parallel register keeps the previous data during the shift and is updated at the end of the transfer.
This is the principle of the SPI transfer. Registers can be cascaded.

The frequent application is to control LEDs. Several
manufacturers propose shift registers with constant current
sources at the outputs. A single resistor sets the current,
same for all LEDs. PWM can be done on every LED. See
.www.didel.com/diduino/CommandeLeds.pdf
for an elegant solution updating PWM while shifting.

WS2801 as example of the inside logic
The WS2801 includes a 24 bit shift register with three 8-bit PWM controllers. Three LEDs are
controlled by the circuit, usually a RGB SMD LED in a 5050 package. Intensity of LEDs is controlled
by a resistor, constant current circuitry makes the intensity independant of the voltage (with 3-5V
range).
The block diagram show something new.
Data is not shifted through the complete
serially connected circuits. The first 24 bits
stay in the first circuit. When 24 clocks are
counted, a switch transfers the clock to the
output. Since there is no load line to
transfer the shifted data to the PWM
circuit, a one-shot circuit is activated when
there is no clock for more than 1 ms. The
signals are regenerated, allowing long
strips, but adding a delay.

As said before, each circuit takes the first set
of clocks and data he receives for himself, not
transmitting that information further. The next
clocks and data are amplified and transmitted.
The delay introduced between each LED may
be noticed over very long strips.
The APA102C implement an additional trick to
make the transmission reliable. It results in a
strange formula, incorrect and not explained
for the terminating frame. Not easy to well
understant if you have not been educated with
integrated circuit logic. Let us try!
Before that, the WS2813 which is one-wire and does not need to use next trick, solves partly the
reliability problem.
An additional input on every LED takes the clock of the previous circuit. If the normal signal is not
active when it should, the signal is taken from the previous LED and the LED can light if good.
For the correct operation of a shift register, the
flipflops must have the data stable when the clock
edge occurs. set-up and hold time is 5 to 20 ns
depending on the technology.The output D'
changes after e.g. 20ns, and this must match the
set-up time of the next flip-flop. One needs to add
output buffers that introduce their own delay, plus
the delay of the line. Depending on the difference
between the clock and data propagation time, the
transfer may not work correctly.
One solution is to increase the delay on the data
line. This was probably done on the WS2801. It is
more reliable to add a flip-flop on the data output,
that add a delay of half a clock. This was
implemented in the 1970' CD4094 8-bit shift
register and is used on the APA102 and SK9822.

 The main advantage is the very high transfer speed it permits with long wires.
Due to the mechanism that allows to access the
pixels in the order they have been sent, and not
as if it was a simple shift register, data is
delayed by half a clock for each consecutive
pixel. The last bit sent for the last pixel must be
pushed half a clock at a time till its destination.

Color control
In order to refresh the colors of a strip, data must be snt in sequence. Data can generated on the
spot, the frequent case for test programs. A copy of the RGB data of all LEDs is usually built in
memory, as one RGB table, or as three tables for the colors.
The second picture documents the HTML colors

Note the color order on the shift register is not always RGB. It is not a reason to use a different order
at the high level.

RGB LEDs technolpgy

Discrete LED chips are soldered inside 5050
packages. It is not well documented what are
the specifications and how the difference of LED
intensity is compensated. In the best case, the
information is.

Red 620-625nm 390-420mcd 2.0-2.2V

Green 522-525nm 660-720mcd 3.0-3.4V

Blue 465-467nm 180-200mcd 3.0-3.4V

Current for each color is not documented.
Color frequency influences the next section.

RGB vs HSV
RGB is not adequate for mixing colors. Using a
"rainbow" variable (called hue) that goes through the
rainbow colors is obtained from mixing RGB, as with the
rather simple algorithm next from
https://github.com/FastLED/FastLED/wiki/Pixel-reference

we have reprogrammed in C (see appendix).
The hue H has a usually a 0-360 value due to its
cylindrical representation. 0-255 is more convenient.
The saturation S says how the image is "rich" vs "pale"
and will be kept at its maximum of 255.
The value V is the brightness 0-255.

Encoding colors is a rich and complex field. It is well described on
http://www.slideshare.net/michelalves/about-perception-and-hue-histograms-in-hsv-space

Note on luminosity
PWM is linear, 0 to 255. Our eye is not linear. 30% of PWM already feels as full light.
Not convinced? Program intensity 0,16, 32… with a change every 0.2 seconds. The first steps are
visible, not the last 5.
This means 16 or 32 intensity values are enough if converted to exponential values.

uint8_t talum[16] = { 0,5,11,18, 26,35,44,54, 64,76,90,110, 135,170,210,255};

Programming existing strips
We are not concerned here about commercial products and their associated libraries.
We document how to program from the low level up, using simple portable C. Understanding how to
initialize a port is the only hardware requirement. Arduino digitalWrite is slow and should not be
used, but update speed is not so critical for short strips.

WS2801/APA102C software
These curcuits have a SPI-like transfer over 2-control lines. The max clock speed for the
WS2801 and APA102C is 20 MHz and data set-up time is 30 ns. The color order for the WS2801
depends on the wiring between the 14-pin circuit and the RGB LED.
The WS2801 restarts when there is no clock for 1ms. It is not documented if the transfer to the
output latches is made when the register is filled or when the 1ms timeout occurs.

The APA102C and SK9822 need a start frame of 32 clocks with null data. Then, for every pixel, 4
bytes in the order - intensity, blue, green, red. Finally, additional clocks are given as explained
before. Some old APA102 strips have a different color order.
No clock for 1ms transfers the data to the LED register, hence minimal clock rate is 1kHz, interrupts
must be less than 1ms.
The first function one need, Send8 (byte); transfers 8 bits. AVR SPI can be used, with Ck on pin 13
and Data on pin 11. SS pin is not used, but that pin must be initialised as an output otherwise
transmission does not happen. Byte transfer is 2us.
Shifting data out by software is slower (7us per byte) but any pin can be used and speed is
adequate. Using the ShiftOut() Arduino function is no sense (slow and not easier).

See https://github.com/nicoud/RgbLeds for details and downloading the code.

??? You can find useful information on the APA102C on https://www.pololu.com/product/2554 with
comments on APA102C vs SK6812.

1-wire smart LEDs
Saving one wire is not a real advantage, since it is slower and less reliable both on hardware and
software side. These circuits have critical timing need need bit-banging assembler code or macros.
Interrupts must be disables during transfers.

Appendix – RGB available smart LEDs
Separate leds can be bought from several vendors. It is of course more easy to buy strips, usually
with a silicon protection. The strips can usually be cut to any length with solder pads.

2 -wires-control 0 – 20 MHz

WS2801 This 14-pin circuit includes three 8-bit PWM . Easy
to program, as shown later. Can be used with any leds and
any resistor value. Ck/Data serial transfer.

The LPD8806/LPD6806 is similar but desappeared from the
market. Transfer was three 5-bit PWM (16-bit words).

WS2801

The APA102C and Sk9822 have SPI-like transfer, no timing
constraint. New - miniature APA102C-2020
The APA102C is an additional control register v that sets the
brightness of every pixel, independently of its color.
APA102 has 20 kHz PWM, SK9822 1.2 kHz

Some old APA102 strips use a G B R order

APA102C SK9822

The new APA102C-2020 is very compact. I does not have a
glass window that diffuse the light. I may be discontinued

1-wire control 800 or 580 kHz

The WS2812b is controlled by one wire with a critical timing
that needs bit-banging routines on 16MHz AVR.

The WS2812 (not shown) was the first RGB 5050 package
with the microcontroller inside. 6-pin package replaced by
WS2812b.
Timings:

WS2812b

The WS2813

The APA104 has a slightly different timing than the
WS2812B, but can be compatible. A 50us delay terminates
the shift-in. LED PWM is ??

APA104

The APA106 is the through-hole LED version of the
APA104. Timing is the same.

Pololu proposes similar LEDs (obsolete?) that include a
WS2811 driver.

APA106

The SK6812 receives 24 bit words.
Transfer speed is 800 kHz. LED PWM is ??

SK6812

The recent (2016) SK6812RGBW adds a white LED.
Transfer speed is 800 kHz. LED PWM is ??

Same timing as SK6812

SK6812RGBW

The recent (2016) WS2813 has one more input connected to
one chip before, in case the previous chip is bad.
Transfer speed is 800 kHz, min 500 kHz

Timing specifications are strange.

WS2813

fx

jdn 161229/170630

